메탄/공기 예혼합화염에서의 수소첨가에 의한 소염 및 $NO_x$ 발생특성에 관한 수치해석

Numerical Analysis of the Extinction and $NO_x$ Emission in Methane/Air Premixed Flame by Hydrogen Addition

  • 조은성 (경동보일러 에너지기술연구소 연구팀) ;
  • 정석호 (서울대학교 기계항공공학부) ;
  • 안국영 (한국기계연구원 청정환경기계연구센터)
  • Cho, Eun-Seong (Research Team, Institute of Energy Technology, KyungDong Boiler) ;
  • Chung, Suk-Ho (School of Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Ahn, Kook-Young (Environmental System Center, Korea Institute of Machinery and Materials)
  • 발행 : 2006.03.15

초록

Lean premixed combustion is a well known method for low $NO_x$ gas turbine combustor. But lean combustion is usually accompanied by flame instability. To overcome this problem, the hydrogen ($H_2$) was added to main fuel methane to increase flammable limit. In this paper, the effects of hydrogen addition on lean premixed combustion of methane ($CH_4$) were investigated numerically. Results showed that the extinction stretch rate increases and the extinction temperature constant with relatively small amount of $H_2$ addition. The flame temperature and NO emission increase with $H_2$ addition at the same stretch rate and equivalence ratio but it could increase the range of lean extinction and extinction equivalence ratio limit. Eventually, the $H_2$ addition case showed almost same or lower NO emission than no addictive $CH_4$ case in the extinction condition.

키워드

참고문헌

  1. A. H. Lefebvre, 'Gas Turbine Combustion', Taylor & Francis, 1983
  2. G. A. Richards, M. M., McMillian, R. S. Gemmen, W. A. Rogers, and S. R., Cully, 'Issues for Low-emission, Fuel-flexible Power Systems,' Prog. Energy Combust. Sci., Vol. 27, 2001, pp. 141-169 https://doi.org/10.1016/S0360-1285(00)00019-8
  3. M. Moliere, 'Stationary Gas Turbines and Primary Energies: A Review of Fuel Influence on Energy and Combustion Performances,' Int. J. Therm. Sci., Vol. 39, 2000, pp. 141-172 https://doi.org/10.1016/S1290-0729(00)00236-2
  4. G. S. Jackson, R. Sai, J. M. Plaia, C. M. Boggs, and K. T. Kiger, 'Influence of $H_2$ on the Response of Lean Premixed $CH_4$ Flames to High Strained Flows,' Combust. Flame, Vol. 132, 2003, pp. 503-511 https://doi.org/10.1016/S0010-2180(02)00496-0
  5. Y. Sakai and M. Kurimoto, 'A Improvement of Lean Combustion Characteristics with Hydrogen Addition in a Flat Stretched Flame,' Transactions of JSME (B), Vol. 67, No. 654, 2001, pp. 529-535 https://doi.org/10.1299/kikaib.67.529
  6. A. E. Lutz, R. J. Kee, J. F. Grear, F. M. Rupley, ' OPPDIF : A Fortran Program for Computing Opposed-Flow Diffusion Flames,' SAND96-8243, 1997
  7. R. J. Kee, F. M. Rupley, and E. Meeks, 'CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical and Plasma Kinetics,' SAND96-8216, 1996
  8. R. J. Kee, J. Warnatz, and J. A. Miller, 'A Fortran Computer Code Package for the Evaluation of Gas-phase Viscosities, Conductivities, and Diffusion Coefficients,' SAND83-8209, 1983
  9. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissianski, and Z. Qin, GRI Mech. Ver. 3.0, http://www.me.erkeley. du/gri_mech/, 2000
  10. C. H. Sohn, S. H. Chung, S. R. Lee, and J. S. Lee, 'Structure and Acoustic-Pressure Response of Hydrogen-Oxygen Diffusion Flames at High Pressure,' Combust. Flame, Vol. 115, 1998, pp. 299-312 https://doi.org/10.1016/S0010-2180(98)00007-8
  11. M. Nishioka, S. Nakagawa, Y. Ishikawa, and T. Takeno, 'NO Emission Characteristics of Methane-Air double Flame,' Combust. Flame, Vol. 98, 1994, pp. 127-138 https://doi.org/10.1016/0010-2180(94)90203-8
  12. T. Takeno and M. Nishioka, 'Species Conservation and Emission Indices for Flame Described by Similarity Solutions,' Combust. Flame, Vol. 92, 1993, pp. 465-448 https://doi.org/10.1016/0010-2180(93)90157-X