이단계 바이오 수소/메탄 생산공정의 경제성 평가

Economic Evaluation of Two-step Biohydrogen/biomethane Production Process

  • 오유관 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 김유진 (부산대학교 화학생명공학과 및 환경기술산업개발연구소) ;
  • 김미선 (한국에너지기술연구원 바이오에너지연구센터) ;
  • 박성훈 (부산대학교 화학생명공학과 및 환경기술산업개발연구소)
  • Oh, You-Kwan (Bioenergy Research Center, Korea Institute of Energy Research) ;
  • Kim, Yu-Jin (Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Kim, Mi-Sun (Bioenergy Research Center, Korea Institute of Energy Research) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University)
  • 발행 : 2006.03.15

초록

본 연구에서는 이 단계 연속 바이오 수소/메탄 생산공정의 경제성을 조사하였다. 경제적 관점에서 다양한 수소 및 메탄 발효용 생물반응기를 비교 평가하였다. 이를 바탕으로 포도당으로부터 일 단계 수소발효를 위해 고온 trickling biofilter 반응기 (TBR, $100\;m^3$ 규모)를, 일 단계 반응의 부산물로 생성된 유기산과 알콜류의 이 단계 메탄전환을 위해 고온 upflow anaerobic sludge 반응기 (UASB; $700\;m^3$ 규모)를 선정하였다. 본 이 단계 공정의 수소생산 비용은 $$\;0.26/Nm^3$으로 계산되었고, 이는 고온 TBR 반응기만을 이용한 경우보다 약 30 % 낮았다. 이 단계 공정의 낮은 수소생산 비용은 높은 에너지 회수율과 낮은 슬러지 처리비용에 의한 것이었다. 생물학적 수소 생산공정의 경제성은 탄소원의 종류, 생물반응기의 형태 등 여러 인자에 의해 변경될 수 있으나, 본 연구결과는 향후 연구를 위한 유용한 기준으로 고려될 수 있다.

키워드

참고문헌

  1. D. Das and T. N. Vezirolu, 'Hydrogen production by biological processes: a survey of literature', Int. J. Hydrogen Energy, Vol. 26, 2001, pp. 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  2. P. Hoffmann, 'Tomorrow's energy: hydrogen, fuel cells, and the prospects for a cleaner planet', The MIT Press, London, 2001, pp. 1-17
  3. J. Chang, K. Lee, and P. Lin, 'Biohydrogen production with fixed-bed bioreactors', Int. J. Hydrogen Energy, Vol. 27, 2002, pp. 1167-74 https://doi.org/10.1016/S0360-3199(02)00130-1
  4. F.-Y. Chang and C.-Y. Lin, 'Biohydrogen production using an up-flow anaerobic sludge blanket reactor', Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 33-9 https://doi.org/10.1016/S0360-3199(03)00082-X
  5. C. C. Chen and C.-Y. Lin, 'Start-up of anaerobic hydrogen producing reactors seeded with sewage sludge', Acta Biotechnol., Vol. 21, 2001, pp. 371-9 https://doi.org/10.1002/1521-3846(200111)21:4<371::AID-ABIO371>3.0.CO;2-Z
  6. N. Kumar and D. Das, 'Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices', Enzyme Microb. Technol., Vol. 29, 2001, pp. 280-7 https://doi.org/10.1016/S0141-0229(01)00394-5
  7. C.-Y. Lin and R. C. Chang, 'Hydrogen production during the anaerobic acidogenic conversion of glucose', J. Chem. Technol. Biotechnol., Vol. 74, 1999, pp. 498-500 https://doi.org/10.1002/(SICI)1097-4660(199906)74:6<498::AID-JCTB67>3.0.CO;2-D
  8. C.-Y. Lin and C.-H. Jo, 'Hydrogen production from sucrose using an anaerobic sequencing batch reactor process', J. Chem. Technol. Biotechnol., Vol. 78, 2003, pp. 678-84 https://doi.org/10.1002/jctb.848
  9. O. Mizuno, R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike, 'Enhancement of hydrogen production from glucose by nitrogen gas sparging', Bioresource Technol., Vol. 73, 2000, pp. 59-65 https://doi.org/10.1016/S0960-8524(99)00130-3
  10. M. Nakamura, H. Kanbe, and J. Matsumoto, 'Fundamental studies on hydrogen production in the acid-forming phase and its bacteria in anaerobic treatment processes the effects of solids retention time', Wat. Sci. Tech., Vol. 28, 1993, pp. 81-8 https://doi.org/10.2166/wst.1993.0146
  11. Y.-K. Oh, S. H. Kim, M.-S. Kim, and S. Park, 'Thermophilic biohydrogen production with trickling biofilter', Biotechnol. Bioeng, Vol. 88, 2004, pp. 690-8 https://doi.org/10.1002/bit.20269
  12. M. A. Rachman, Y. Nakashimada, T. Kakizono, N. Nishio, 'Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor', Appl. Microbial. Biotechnol., Vol. 49, 1998, pp. 450-4 https://doi.org/10.1007/s002530051197
  13. H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi, and Y. Takasaki, 'Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39', J. Ferment. Bioeng., Vol. 83, 1997, pp. 481-4 https://doi.org/10.1016/S0922-338X(97)83006-1
  14. Y.-K. Oh, E.-H. Seol, E. Y. Lee, and S. Park , 'Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4', Int. J. Hydrogen Energy, Vol. 27, 2002, pp. 1373-9 https://doi.org/10.1016/S0360-3199(02)00100-3
  15. Y.-K. Oh, M. S. Park, E.-H. Seol, S. J. Lee, and S. Park, 'Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor', Biotechnol. Bioprocess Eng., Vol. 8, 2003, pp. 54-7 https://doi.org/10.1007/BF02932899
  16. Y.-K. Oh, E.-H. Seol, J. R. Kim, and Park S , 'Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19', Int. J. Hydrogen Energy, Vol. 28, 2003, pp. 1353-9 https://doi.org/10.1016/S0360-3199(03)00024-7
  17. T. de Vrije and P. A. M. Claassen, 'Dark hydrogen fermentations', in J. H. Reith, R. H. Wijffels, and H. Barten (Edi.), 'Bio-methane & Bio-hydrogen: Status and perspectives of biological methane and hydrogen production', Dutch Biological Hydrogen Foundation, The Netherlands, 2003, pp. 103-23
  18. Y.-K. Oh, E.-H. Seol, M.-S. Kim, and S. Park, 'Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4', Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 1115-21
  19. J. R. Benemann, 'The technology of biohydrogen', in O. R. Zaborsky (Edi.), 'Biohydrogen', Plenum Press, New York, 1998, pp. 19-30
  20. T. Z. D. de Mes, A. J. M. Starns, J. H. Reith, and G. Zeeman, 'Methane production by anaerobic digestion of wastewater and solid wastes', in J. H. Reith, R. H. Wijffels, and H. Barten (Edi.), 'Bio-methane & Bio-hydrogen: Status and perspectives of biological methane and hydrogen production', Dutch Biological Hydrogen Foundation, The Netherlands, 2003, pp. 58-102
  21. L. Seghezzo, G. Zeeman, J. B. van Lier, H. V. M. Hamelers, and G. Lettinga, 'A review: The anaerobic treatment of sewage in UASB and EGSB reactors', Bioresource Technol., Vol. 65, 1998, pp. 175-90 https://doi.org/10.1016/S0960-8524(98)00046-7
  22. S. Tanisho, 'Feasibility study of biological hydrogen production from sugar cane by fermentation', Proceedings of 11th World Hydrogen Energy Conference, Stuttgart, Germany, 1996, pp. 2601-6
  23. Y. Ahn and S. Park, 'Microbial and physicochemical monitoring of granular sludge during start-up of thermophilic UASB reactor', J. Microbiol. Biotechnol., Vol. 13, 2003, 378-84
  24. J. B. van Lier, 'Limitations of thermophilic anaerobic wastewater treatment and the consequences for process design', Antonie van Leeuwenhoek, Vol. 69, 1996, pp. 1-14 https://doi.org/10.1007/BF00641606
  25. A. C. van Haandel and G. Lettinga, 'Anaerobic sewage treatment: A practical guide for regions with a hot climate', John Wiley & Sons Inc., New York, 1994
  26. J. E. Schmidt and B. K. Ahring, 'Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors', Biotechnol. Bioeng., Vol. 49, 1996, pp. 229-46 https://doi.org/10.1002/(SICI)1097-0290(19960205)49:3<229::AID-BIT1>3.0.CO;2-M
  27. S. Uemura and H. Harada, 'Microbial characteristics of methanogenic sludge consortia developed in thermophilic UASB reactors', Appl. Microbiol. Biotechnol. Vol. 39, 1993, pp. 654-60 https://doi.org/10.1007/BF00205070
  28. T. Ohtsuki, S. Tominaga, T. Morita, and M. Yoda, 'Thermophilic UASB system start-up and management: change in sludge characteristics in the start-up procedure using mesophilic granular sludge', Proceedings of the Seventh International Symposium on Anaerobic Digestion, Cape Town, South Africa, 1994, pp. 348-57
  29. Metcalf & Eddy, Inc., 'Wastewater engineering: treatment, disposal, and reuse', 3rd ed., McGraw-Hill, Singapore, 1991. pp. 121-46
  30. K. V. Rajeshwari, M. Balakrishnan, A. Kansal, K. Lata, and V. V. N. Kishore, 'State-of-the-art of anaerobic digestion technology for industrial wastewater treatment', Renew. Sust. Energy Rev., Vol. 4, 2000, pp. 135-56 https://doi.org/10.1016/S1364-0321(99)00014-3
  31. H.-Q. Yu, H. H. P. Fang, and G.-W. Gu, 'Comparative performance of mesophilic and thermophilic acidogenic upflow reactors', Process Biochem., Vol. 38, 2002, pp. 447-54 https://doi.org/10.1016/S0032-9592(02)00161-9
  32. S. C. Park, J. P. Lee, J. J. Hong, J. S. Lee, G. W. Moon, M. S. Kim, and J. G. Cho, 'Process Development for Energy and Compost Recovery from Biodegradable Municipal Solid Waste (III)', Report to the Ministry of Industry and Resources, KIER-951123, 1996
  33. J. F. Malina and F. G. Pohland, 'Design of anaerobic processes for the treatment of industrial and municipal wastes', Technomic Publishing Company, Inc., Lancaster, 1992
  34. M. Kaylen, D. L. Van Dyne, Y.-S. Choi, and M. Blase, 'Economic feasibility of producing ethanol from lignocellulosic feedstocks', Bioresource Technol., Vol. 72, 2000, pp. 19-32 https://doi.org/10.1016/S0960-8524(99)00091-7
  35. M. D. Luccio, C. P. Borges, and T. L. M. Alves, 'Economic analysis of ethanol and fructose production by selective fermentation coupled to pervaporation: effect of membrane costs on process economics', Desalination, Vol. 147, 2002, pp. 161-6 https://doi.org/10.1016/S0011-9164(02)00526-X
  36. F. R. Benemann, 'Process analysis and economics of biophotolysis of water', Report to the International Energy Agency Hydrogen Program, Subtask B, Annex 10, Photoproduction of Hydrogen, IEA/H2/10/TR298, 1998
  37. R. E. Speece, 'Anaerobic biotechnology for industrial and wastewaters', Archae Press, Tennessee, 1996, pp. 25-68
  38. D. R. Simbeck and E. Chang, 'Hydrogen Supply: Cost Estimate for Hydrogen Pathways Scoping Analysis', Report to the National Renewable Energy Laboratory, NREL/SR-54032525, 2002
  39. P. A. Trout, T. Schultz, and G. K. Schlegel, 'Using anhydrous ammonia during anaerobic digester start-up', In: Treatment Process Digest, Water Environment Federation, Gaithersburg, 1993, pp. 314-22
  40. Y.-K. Oh, S.-H. Lee, H.-S. Kim, Y.-J. Kim, S.-J. Lee, and S. Park : 'Biodegradation of a reactive dye, Remazol Black B in a UASB reactor', Korean J. Biotechnol. Bioeng., Vol. 14, 1999, pp. 688-95
  41. S.-H. Yoon, H.-S. Kim, and I.-T. Yeom, 'The optimum operational condition of membrane bioreactor (MBR): cost estimation of aeration and sludge treatment', Wat. Res., Vol. 38, 2004, pp. 37-46 https://doi.org/10.1016/j.watres.2003.09.001
  42. P. C. Hallenbeck and J. R. Benemann, 'Biological hydrogen production: fundamentals and limiting processes', Int. J. Hydrogen Energy, Vol. 27, 2002, pp. 1185-93 https://doi.org/10.1016/S0360-3199(02)00131-3
  43. K. Adamson and P. Pearson, 'Hydrogen and methanol: a comparison of safety, economics, efficiencies and emissions', J. Power. Sources, Vol. 86, 2000, pp. 548-55 https://doi.org/10.1016/S0378-7753(99)00404-8
  44. C. E. G. Padro and V. Putsche, 'Survey of the economics of hydrogen technologies', Report to the National Renewable Energy Laboratory, NREL/TP-570-27079, 1999