Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups

PFCB Group을 포함한 Fluorene계 고분자 전해질막 제조 및 특성연구

  • Kim Jeong-Hoon (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Kim Dong-Jin (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology, Department of Polymer Science and Engineering, Chungnam National University) ;
  • Chang Bong-Jun (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Shin Chong-Kyu (LG Chem, Ltd./Research park) ;
  • Lee Soo-Bok (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Joo Hyeok-Jong (Department of Polymer Science and Engineering, Chungnam National University)
  • 김정훈 (한국화학연구원 계면재료공정연구실) ;
  • 김동진 (한국화학연구원 계면재료공정연구실, 충남대학교 고분자공학과) ;
  • 장봉준 (한국화학연구원 계면재료공정연구실) ;
  • 신정규 (LG화학 기술연구소) ;
  • 이수복 (한국화학연구원 계면재료공정연구실) ;
  • 주혁종 (충남대학교 고분자공학과)
  • Published : 2006.03.01

Abstract

We report on the preparation and characterization of sulfonated polymer membranes containing perfluorocyclobutane (PFCB) units and fluorene units. The polymers were prepared through three synthetic steps, that is, the synthesis of a trifluorovinylether-terminated monomer, its thermal polymerization, and post-sulfonation using chlorosulfonic acid. A series of sulfonated polymers with different ion exchange capacity (IEC) were prepared by changing the content of chlorosulfonic acid during the post-sulfonation reaction. All the synthesized compounds were characterized by FT-IR, $^{1}H-NMR,\;^{19}F-NMR$, and Mass spectroscopy. As the content of chlorosulfonic acid increased, the SD, IEC, water uptake, and ion conductivity of the sulfonated polymer membranes increased. The sulfonated polymer 4 showed higher values of ion conductivity than the Nafion-$115^{\circledR}$ in a wide range of temperatures ($25{\sim}80^{\circ}C$).

본 연구는 불소관능기인 perfluorocyclobutane (PFCB)과 fluorene계 방향족 화합물을 동시에 포함하는 술폰화된 고분자 전해질 막의 제조 및 그 특성에 관한 것이다. 이러한 고분자 전해질 막은 세 단계의 합성, 즉 trifluorovinyloxy그룹을 양말단에 포함하는 fluorene계 단량체의 합성, 중부가 반응 형태의 열중합, 그리고 chlorosulfonic acid를 이용한 후술폰화(post-sulfonation)를 통하여 얻어졌다. 후술폰화 반응은 일정한 시간과 온도 조건하에서 술폰화제의 첨가 비율을 달리하여 진행되었으며, 이에 따라 다양한 이온교환 능력(IEC)을 가지는 고분자를 합성할 수 있었다. 제조된 단량체 및 고분자들의 구조와 순도는 각각 FT-IR과 NMR 그리고 질량분석기를 통하여 확인되었다. 사용된 술폰화제의 양이 많아질수록 술폰화도와 이온교환 능력이 증가하는 것을 확인할 수 있었고 그에 따른 함수율도 역시 증가하는 거동을 보였다. 술폰화된 고분자들의 이온전도도를 측정한 결과 술폰화도가 증가할수록 이온 전도도가 증가하는 것을 관찰할 수 있었다. 이렇게 제조된 전해질막 중 IEC 값이 1.86 mmol/g인 고분자(sulfonated polymer 4)의 경우 다양한 온도범위($25{\sim}80^{\circ}C$)에서 상용 전해질막인 Nafion-115를 능가하는 우수한 이온전도도를 나타냈다.

Keywords

References

  1. T. A. Zawodzinski, J. Davey, J. Valerio, and S. Gottesfeld, 'The water content dependence of electroosmotic drag in proton-conducting polymer electrolytes', Electrochim. Acta, 40, 297 (1995) https://doi.org/10.1016/0013-4686(94)00277-8
  2. O. Savadogo, 'Emerging membrane for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems', J. New. Mat. Electrochem. Systems, 1, 47 (1998)
  3. O. Savadogo, 'Emerging membranes for electrochemical systems partII, High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications', J. Power Sources, 127, 135 (2004)
  4. C. H. Lee, Y. T. Hong, J. H. Lee, H. B. Park, D. W. Han, and Y. M. Lee, 'Approaches and recent development of polymer electrolyte membrane (PEM) for fuel cells', Polym. Sci. Tech., 15, 578 (2004)
  5. M. Rikukawa, 'Proton-conducting polymer electrolyte membranes based on hydrocarbon polymer', Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  6. X. Glipa, M. E. Haddad, D. J. Jones, and J. Roziere, 'Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer', Solid State Ionics, 97, 323 (1997) https://doi.org/10.1016/S0167-2738(97)00032-5
  7. Q. G. Peter, N. Pintauro, H. Tang, and S. O'Connor, 'Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes', J. Membr. Sci., 154, 175 (1999) https://doi.org/10.1016/S0376-7388(98)00282-8
  8. W. Essafi, G. Gebel, and R. Mercier, 'Sulfonated polyimide ionomers: A structural study', Macromolecules, 37, 1431 (2004) https://doi.org/10.1021/ma034965p
  9. R. Y. M. Huang, P. Shao, C. M. Bums, and X. Feng, 'Sulfonation of poly(ether ether ketone) (PEEK): Kinetic study and characterization', J. Appl. Polym. Sci., 82, 2651 (2001) https://doi.org/10.1002/app.2118
  10. R. Souzy and B. Ameduri, 'Functional fluoropolymers for fuel cell membranes', Prog. Polym. Sci., 30, 644 (2005) https://doi.org/10.1016/j.progpolymsci.2005.03.004
  11. K. D. Kreuer, 'On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells', J. Membr. Sci., 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  12. Q. Pei and Y. Yang, 'Efficient photoluminescence and electroluminescence from a soluble polyfluorene', J. Am. Chem. Soc., 118, 7416 (1996) https://doi.org/10.1021/ja9615233
  13. H. Kameshima, N. Nemoto, and T. Endo, 'Synthesis and properties of fluorene-based fluorinated polymers', J. Polym. Sci., Part A: Polym. Chem., 39, 3143 (2001) https://doi.org/10.1002/pola.1296
  14. X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, and K. I. Okamoto, 'Novel sulfonated polyimides as polye1ectro1ytes for fuel cell application. 2. synthesis and proton conductivity of polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic acid', Macromolecules, 35, 6707 (2002) https://doi.org/10.1021/ma020260w
  15. K. Miyatake, Y. Chikashige, and M. Watanabe, 'Novel sulfonated poly(arylene ether): A proton conductive polymer electrolyte designed for fuel cells', Macromolecules, 36, 9691 (2003) https://doi.org/10.1021/ma035452l
  16. X. Shang, S. Tian, L. Kong, and Yuezhong Meng, 'Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane', J. Membr. Sci., 266, 94 (2005) https://doi.org/10.1016/j.memsci.2005.05.014
  17. M. C. Yoo, B. J. Chang, J. H. Kim, S. B. Lee, and Y. T. Lee, 'Sulfonated perfluorocyclobutyl biphenylene polymer electrolyte membranes for fuel cells', Membrane J., 15, 355 (2005)
  18. D. A. Babb, 'Polymers from the thermal $(2{\Pi}+2{\Pi})$ cyclodimerization of fluorinated olefins', Plenum Press, New York, 25 (1999)
  19. W. S. Choi and F. W. Harris, 'Synthesis and polymerization of trifluorovinylether-terminated imide oligomers. I', Polymer, 41, 6213 (2000) https://doi.org/10.1016/S0032-3861(99)00857-5
  20. I. Rico and C. Wakselman, 'Condensation of 1,2-dibromotetrafluoroethane with various potassium thiophenoxides and phenoxides', J. Fluorine Chem., 20, 759 (1982) https://doi.org/10.1016/S0022-1139(00)81443-8
  21. D. A. Babb, B. R. Ezzell, K. S. Clement, W. F. Richey, and A. P. Kennedy, 'Perfluorocyclobutane aromatic ether polymers', J. Polym. Sci., Part A: Polym. Chem., 31, 3465 (1993) https://doi.org/10.1002/pola.1993.080311336
  22. A. P. Kennedy, D. A. Babb, J. N. Bremmer, and A. J. Pasztor Jr, 'Perfluorocyclobutane aromatic ether polymers. II. thermal/oxidative stability and decomposition of a thermoset polymer', J. Polym. Sci., Part A: Polym. Chem., 33, 1859 (1995) https://doi.org/10.1002/pola.1995.080331113
  23. S. Wong, H. Ma, A. K. Y. Jen, R. Barto, and C. W. Frank, 'High fluorinated fluorovinyl aryl ether monomers and perfluorocyclobutane aromatic ether polymers for optical waveguide applications', Macromolecules, 36, 8001 (2003) https://doi.org/10.1021/ma034467g
  24. S. Wong, H. M.a, Alex K. Y. Jen, Ri. Barto, and C. W. Frank, 'Perfluorocyclobutane-based polyester (arylene ether)s for applications in integrated optics', Macromolecules, 37, 5578 (2004) https://doi.org/10.1021/ma049783p
  25. J. Ghim, D. S Lee, B. G. Shin, D. Yak, D. K. Yi, M. J Kim, H. S. Shim, J. J. Kim, and D. Y. Kim, 'Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices', Macromolecules, 37, 5724 (2004) https://doi.org/10.1021/ma035161c
  26. D. W. Smith Jr, D. A. Babb, H. V. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. W. Boone, C. Langhoff, and M. Radler, 'Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials', J. Fluorine Chem., 104, 109 (2000) https://doi.org/10.1016/S0022-1139(00)00233-5
  27. V. Saarinen, T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala, and K. Kontturi, 'New ETFE-based membrane for direct methanol fuel cell', Electrochim. Acta, 50, 3453 (2005) https://doi.org/10.1016/j.electacta.2004.12.022
  28. C. Lee, S. Sundar, J. Kwon, and H. S. Han, 'Structure-property correlations of sulfonated polyimides. I. Effect of bridging groups on membrane properties', J. Polym. Sci., Part A: Polym. Chem., 42, 3612 (2004) https://doi.org/10.1002/pola.20214
  29. C. Lee, S. Sundar, J. Kwon, and H. S. Han, 'Structure-property correlations of sulfonated polyimides. II. Effect of bridging groups on membrane properties', J. Polym. Sci., Part A: Polym. Chem., 42, 3621 (2004) https://doi.org/10.1002/pola.20215