(ER) SHRUEIOICIOIBEIX K103 Ri13 20064 38
Modeling Service based on XML Schema for
MPEG Multimedia Middleware

Hendry and Munchurl Kim*
Abstract multimedia content has pushed the software

Recently MPEG (Moving Picture Experts
Group) has started a new standardization activ-
ity called MPEG Multimedia Middleware
(M3W). The M3W supports multimedia appli-
cations independent of hardware and software
such as operating systems so that the port-
ability and interoperability of multimedia appli-
cations are greatly improved. In doing so, the
M3W adopts the concept of a service-based
middleware. The M3W standardizes a set of
multimedia Application Programming Interfaces
(APIs) and their implementations can be pro-
vided by third parties in the form of services.
In this paper, we introduce the usage of XML
metadata in describing the standard multirhedia
APIs and third party’s services and also we ex-
plain the role of the XML Schema within the
M3W in providing transparent access from ap-

plication to the M3W services.

1. Introduction

The increasing appetite of end-user for the

9|

SR ESAUER(CY) S3tF Fu

vendors to be able to develop multimedia appli-
cations in a short time. To make easier and
faster the development of multimedia applica-
tions, a new approach is being taken in a stand-
ardized way by which a multimedia application
needs only to assemble some components or
services, and links them together to form a spe-
cific application. Some codes or modules that
are common for multimedia applications can be
implemented separately in the form of services
so that any application can be developed in a
higher level.

The service-based approach offers several
advantages for the application developers.
Firstly, it makes the applications more modular,
hence increasing their reusabilities. An applica-
tion that uses many reusable modules can be
developed faster since they are not necessarily
to be implemented again. Secondly, the serv-
ice-based approach enables the multimedia ap-
plications to be enhanced with respect to their
portability and interoperability over different
platforms since any specific processing module
to a certain platform can be implemented as a

service. To this end, the multimedia applications

- 114 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

DI HEIOICIOISY X K103 AI12 20061 38

become less dependent of specific platforms.

MPEG, through MPEG Multimedia
Middleware (M3W), provides a service-based
middleware that is dedicated for multimedia ap-
plications{2]. For the M3W, MPEG is currently
standardizing a set of multimedia APIs while the
implementations of those standardized APIs are
left for the third party’s implementations for
services. For the rest of the paper, the M3W
service will be written as Service (with capital
S). To mprove the concept of modularity and re-
usability, a Service may also have dependency
on the other Services so that the Service may
have a hierarchical structure in the M3W.
Multimedia applications need to know only the
syntaxes and semantics of the standardized set
of APIs of the M3W while how they are im-
plemented is outside the scope of the M3W
standard.

In order to provide a transparent access to
the Services of the M3W, the M3W manages
the relationship between the standardized APIs
and the Services that provide the im-
plementations and also the relationships among
the Services. Those relationships are described
by using XML Schema by which the syntaxes
and semantics of their data types are
standardized. In this paper, we explain the role
of the XML Schema in the M3W for providing
the transparent access from the applications to
the Services. When a request from an applica~
tion is made to use certain functionality
(through APIs), the M3W seeks for the avail-

ability of the Services, initiates them, and then

returns the handler to the requester. All these
tasks are possible with the provision of XML
description in the M3W.

This paper is organized as follow: In Section
2, we explain the M3W architecture. Readers
can get more detailed information about the
M3W and their interaction in Section 3. We ex-
plain the concept of the hierarchical structure
of Service in Section 4, and describe the role
of XML Schema in the M3W for providing the
transparent access from applications to
Services in the middleware in Section 5. We
show a use-case example taken from a real
multimedia APIs specification with the in-
stances of XML description and their usage.

Finally, we present the conclusion in Section 6.

2. M3W Architecture

The M3W lies between the computing plat-
form and the applications/other middleware
(which MPEG considers as an application for
MB3W as well) to bridge the access gap between
them. As shown in Fig. 1, the communication
between the M3W and the upper layer
(applications) is provided through the defined
API sets which are supposed to be standardized
in the MPEG. While the link from the applica-
tion to M3W is standardized, the link from M3W
to the platform is not standardized. It is left as
an implementation issue of the Services that re-
alize the M3W APIs [4].

As shown in Fig. 2, Service has a direct ar-

row to access the platform. Service can be im-

- 115 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

DZYEHOCOAAXN K104 H1Z 20064 38

~ M3W
API
Support AP, tE
Non-functional API | 8.8 M3W
%ﬂ ‘ - — APl
API Na Multimedia Platform - MM API
- Functional API

N

This API is not defined, and is

implementation-specific for each

M3W implementation

Fig. 1. M3W position in the computing layer (4]

plemented in a customized way by accessing a
special API or resource provided by the plat-
form where it is running. By this approach, the
application does not depend upon the computing
platform since the middleware (M3W) has taken
over the dependency to the platform. When an
application is moved or ported to a new plat-
form, minimum or no further modification effort
may be required since it can just simply access

the same (standard) available functionality but

implemented by a different Service (for the new
platform).

Tig. 2 shows the architecture of the M3W in
terms of the M3W entities. One of the M3W
entities is the Logical Component which in-
dicates a group of multimedia APIs that perform
a certain multimedia functions. The Logical
Component provides a list of APIs definitions
while the implementation of those APIs is pro-

vided by the Service(s). In other words, the

L User Applications l
7 iaandagadiil oo SR oA R 000 0
Service Logical Logical Logical Logical Logical
Manager Component || Component || Component || Component Component

RRE 4 4+t 2 %
Service I Service l I Service | l Service I
LService l [Service J
v A l A l A
l Computing Platform

Support Multimedia
Tlmplement £Dependency) lAccess T API T AP

Fig. 2. M3W entities (1)

- 116 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

SZUEDTOSOIN X104 K12 20061 38

Logical Component and the Service can be
analogized as an abstract class and an instance,
respectively. The class definition contains a set
of APls that can be used fo access its function-
ality while their implementations are provided
by the instance of that class [1].

The M3W has several support Services that
are dedicated for the management of the mid-
dleware operations. Regarding the management
of the available Services in the middleware,
there are two major support Services: Runtime
Environment (RRE) and Service Manager. The
RRE is responsible to manage the storing, re-
trieving, instantiation, and initialization of the
Services. The Service Manager, on the other
hand, is responsible to link Service Instances,
resolving their association with the Logical
Component, and returning the handler of the
Service instance to the requester (application).
In short, the Service Manager receives a re-
quest for a function (whose APIs are exposed
by the Logical Component), takes a decision on
which the Services are needed, request the RRE

!

f

to instantiate and initialize them, and then
Service Manager links them before handling
the handler to the requester. More details will

be described in the later sections.

3. Hierarchical Structure of Service

Service is designed to be flexible, modular,
and efficient in its implementation. This can be
achieved by letting an implementation of a
Service use the functionality that is provided by
other Services. Hence, a Service may depend
on other Service(s) and have a hierarchical de-
pendency in their structures [1].

Fig. 3 illustrates the implementation of a
Service that efficiently uses the functionality
from other Services. A video decoder Service,
for example, may consist of several independent
functions such as a variable length coding
(VLC)

(DCT) function, quantization function, motion

function, discrete cosine transform

estimation/compensation function, etc. The vid-

eo decoder Service can be implemented as mod-

Service A

(Video Decoder Service)

Service B

Service C Service D Service E Service F
{Motion Estimation Service) | | (DCT Service) || (VLC Service) | | (Quantization Service)
Depend on Available
v interface

Fig. 3. Service composition example (1)

- 117 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

SIYEINCIOAX K10 H1T 20064 38

ular as possible by using other implementations
that offer the required functionalities. Hence, in
its implementation, the implementer needs to
code the execution flow of those Services.

In other cases, supposed that an audio de-
coder Service also resides in the same
middleware. With the hierarchical concept of the
Service implementation, it may not be neces-
sary to have two DCT, VLC, and quantization
Services. The same Services that are used for
the video decoder Service can be used to serve
the audio decoder Service as well. So, the mid-
dleware can be very efficient in the sense that
there is no duplication of the offered functions.

The binding between the Service and its de-
pendencies is mediated by the Service
Manager. During its instantiation and initializa-
tion, the Service can request to the Service
Manager to provide its dependent service(s).
The Service Manager gives the best possible
Service by using the knowledge from the avail-
able metadata (XML description of the

Services) [11.

T "

4. XML Description Roles in M3W

The XML description is used to describe the
Logical Component and Service. These Logical
Component and Service’s descriptions are im-
portant for the Service Manager in performing
its operation since it has to keep information
about the entities that it manages. The Logical
Component description tells the Service
Manager about the list of the Logical Compo-
nents (with list of its multimedia APIs in it) that
the middleware can offer to the applications.
The Service description tells the Service
Manager about which interfaces of the Logical
Components are implemented and provided, and
also about which interfaces are required
(implemented by other Service(s)) in order to

be able to execute the Service.

4.1. Logical Component Description

Fig. 4 shows a fragment of the complete
structure of the Logical Component model. As

shown in Fig. 4, the Logical Component hier~

Fig. 4. Structure of Logical Component description
(Fragmented from the complete structure)

- 118 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

DIHEIDICIOIBYX K103 1@ 20064 38

archically contains roles, interfaces, and APIs
(methods). The Logical Component description
is an input for the Service Manager as config-
uration by the middleware implementer or mid-
dleware administrator. The complete syntaxes

and semantics are provided in {1].

4.2. Service Description

Fig. 5 shows the structure of a Service model
specified by XML Schema. As indicated in Fig.
5, several Services are described together in a
Component. A Component is used as a
container. It may be imagined like an DLL in
which several OCX objects are carried together.
A Component is also a unit for trading. A soft-

ware vendor that produces Services can pack-

| m2w Enaponnnt T ype

] { Conponento b

i

t
i
v

t
weeintortaces T el]
;nmmlwuewpr === v

age their Services (which are related each oth-
er) in a single Component and deliver/sell it.

The Service description shown in Fig. 5 is
related to the Logical Component description by
the InterfacelD element. Hence, we can say that
the interfaces that are listed in the Logical
Component description are implemented by the
Services which are related through the InterfacelD.

The Service may have a hierarchical struc-
ture because it may have dependency on other
interfaces which are implemented by other
Services. This dependency is formed by the ex-
istence of RequiredInterfaces element as the
child element of the Service as shown in Fig.
5. The complete syntaxes and semantics can be

found in [1].

Service that implements
77 the standard interface ~ T 71

mdwctrieroceD }: ¢

Form dependency to other
Service that implement the
required interface

Fig. 5. Structure of Service description

- 119 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

BZHEDIOORYN K103 K13 2006 38

Unlike the Logical Component description
which is input to the Service Manager as a
manual configuration, the Service Manager can
actively and automatically collect the Service
description at the installation of the Service into

the middleware.

4.3. Transparent Service Access

T l;e Service Manager, the Logical Compo-
nent description, and the Service description are
the key factors for providing a transparent ac—
cess from an application to the Service. The ac-
cess is transparent in the sense that the applica-
tion does not have to know anything about the
Service. The application just needs to request
a multimedia function by simply asking the
Service Manager to provide the implementation

of the function, so that Service Manager han-

dles the rest.

Fig. 6 shows a visualization of the steps to
get a Service. The application first sends a re-
quest to get a Service for the Logical
Component whose function it needs. The
Service Manager upon receiving the request
.will infer within its knowledge (Logical
Component description and Service description)
to get the identification of the appropriate
Service that implements the requested Logical
Component. In the case that there are several
Services that implement the requested Logical
Component, the Service Manager will decide
the best Service to be instantiated. The policy
of deciding the best Service depends on the im-
plementation of the Service Manager. For ex-
ample, the Service Manager can be Im-

plemented to give higher priority to the Service

Request a User Applications
Ser\ncg fora ‘ O Access available
Logical
Component TT MM API TT
Service Logical Logical Logical
Manager Component Component Component
® Request f ?
llllIIIIIIIIIlllllllllllIIll|l‘IlIllIllllIIIIIIIIIIIIIIIIIII
Instance Implement +
Service || Service Service Service
RRE Instance || Instance Instance Instance
)
— *e o¢
Platform Service Service || Service
Instance instance || Instance

Fig. 6. Steps for requesting a Service

- 120 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

SIZYEIDOOSYXN H103 A18 20064 38

Application

Service Manager RRE

isServiceAvailable (string IcID)

Return: true

getinstanceForLogicalCompanent (string icID)

Return: service handler

] getServicelDForLC (string lcID)

instantiateService (string srvID)

Return: service handler

&

Fig. 7. Seguence diagram of requesting a Service.

that has less dependency or, in other extreme
case, the Service Manager can give a higher
priority to the Service that is provided by a cer-
tain vendor. After having the identification of
the Service with its dependences, the Service
Manager will ask RRE to instantiate the
Services. Then, the Service Manager will link
the Services. Finally, the Service Manager re-
turns the handler of the Service to the
application.

Fig. 7 shows a sequence diagram of the proc-
ess described above. It shows the process in a
more technical manner by showing which APIs

of the support Services are invoked.

5. Use-Case: XML Description
Instance Examples and Their
Usage

In this section, we show a use-case descrip-

tion example of the Logical Component from

UHAPI specification (that will be part of M3W
Part 2: Multimedia APD) [3][15]) about an audio
controller and we also show the description of
the Services that provide the implementation of
the interfaces that are declared in the Logical
Component. Through this simple example, we
show how the Service Manager can take bene-
fit from the descriptions.

Table 1 shows an example of the Logical
Component description. In this example, the
middleware just offers two Logical Compo-
nents which are related to the audio controller
function: automatic audio level controller and
audio dynamic range controller.

Suppose there is Vendor A, a software devel-
oper who provides an implementation of the
Logical Component about an audio dynamic
range controller and its implementation is
aligned to the M3W specification as shown in
its Service description in Table 2. Vendor A im-

pleménts the audio dynamic range controller

- 121 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware SI2HEIDO YA A10H H18 20064 3%

Table 1. Example of Audio Controller Logical Component description instance

<?xml version="1.0" encoding="UTF-8"7>
<M3WLC xmlns="http://mpeg-m3w/MM_APIs"
xmins:xsi="http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation="http://mpeg-m3w/MM_APIs DAMPEG\Schemas\M3WLogicalComponent.xsd”
version="1.0">
<LogicalComponents>
<ParamClassTypes>
<ParamClassType name="uhErrorCode_t">
<Description>This type represents the error code that can be thrown by the API of
this Logical Component
</Description>
</ParamClassType>
<ParamClassType name="uhAavl_ValStat_t">
<Description>This type represents the validity status of the related
property/properties
</Description>
</ParamClassType>
<ParamClassType name="uhAavl_Ntf_t">
<Description>
Values of this type represent notification functions.
That is, there is a one-to—one correspondence between these values and the functions
in the notification interface uhlAaviNtf
</Description>
</ParamClassType>
<ParamClassType name="uhAavl_NtfSet_t">
<Description>
Values of this type represent sets of notification functions which are
typically constructed by logical OR-ing of values of type uhAavl_Ntf_t
</Description>
</ParamClassType>
<ParamClassType name="uhAavl_AlINtfs_t">
<Description>Defines the set of all values of type uhAavl_Ntf_t</Description>
</ParamClassType> '
<ParamClassType nameé”uhAdrc_Mode_t”>
<Description>Values of this type represent the DRC modes settable by the
user</Description>
</ParamClassType>
<ParamClassType name="uhAdrc_ModeSet_t">
<Description>Values of this type represent notification functions</Description>
</ParamClassType>
<ParamClassType name="uhAdrc_NtfSet_t">
<Description>
Values of this type represent sets of notification functions that are
tvpically constructed, by logical OR-ing of values uhAdrc_Ntf_t
</Description>

- 122 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware SYEIOOOISO X Ki10A H13 2006 38

</ParamClassType>
<ParamClassType name="uhAdrc_AlINtfs">
<Description>Defines the set of all values of type uhAdrc_Ntf_t</Description>
</ParamClassType>
</ParamClassTypes>
<LogicalComponent id="urn:MPEG-M3W/LC/AVL” name="AutomaticVolumeLeveling”>
<Description>
Provides interface suites for the control over the automatic volume leveling functionality
</Description>
<Role id="urn'MPEG-M3W/ROLE/AAVL"
name="AudioAutomaticVolumeLevelerRole">
<Interface id="urn:MPEG-M3W/INF/uhlAavl" name="uhlAavl">
<Method name="Subscribe"output="void">
<Parameter name="pINotify"type="+*uhIAavINtf"/>
<Parameter name="cookie"type="UInt32"/>
<Parameter name="notifs"type="uhAavl_NtfSet. t"/>
</Method>
<Method name="Unsubscribe” output="void">
<Parameter name="pINotify"type="*uhlAavINt{"/>
<Parameter name="cookie”type="Uint32"/>
<Parameter name="notifs"type="uhAavl_NtfSet_t"/>
</Method>
<Method name="Enable”output="void">
<Parameter name="enable"type="Bool"/>
</Method>
<Method name="GetEnabled” output="Bool"/>
<Method name="SetLevel"output="void">
<Parameter name="level"type="Uint32"/>
</Method>
<Method name="GetlLevel”output="Uint32"/>
</Interface>
<Interface id="urn:MPEG-M3W/INF/uhlAavINtf” name="uhlAavINtf">
<Method name="OnSubscriptionChanged” output="void”>
<Parameter name="cookie"type="Uint32"/>
<Parameter name="notifs"type="uhAavl_NtfSet_t"/>
</Method>
<Method name="OnActEnabledChanged” output="void">
<Parameter name="cookie"type="Uint32"/>
<Parameter name="status"type="uhAavl_ValStat_t"/>
<Parameter name="enable"type="Bool"/>
</Method>
</Interface>
</Role>
</LogicalComponent>
<LogicalComponent id="urn:MPEG-M3W/LC/ADRC"
name="AudioDynamicRangeController”>

Modeling Service based on XML Schema for MPEG Multimedia Middleware BIYEDDHNK H10E H13 200619 38

</Description>

name="AudioDynRgnControllerRole”>

</Method>

</Method>

</Method>

</Interface>

</Method>

</Method>
</Interface>
</Role>
</LogicalComponent>
</LogicalComponents>
</M3WLC>

<Description> Provides interface suites for the audio dynamic range control functionality
<Role id="urn:MPEG-M3W/ROLE/AdynRngCon”

<Interface id="urn:MPEG-M3W/INF/uhlAdrc” name="uhlAdrc">
<Method name="Subscribe”output="void">
<Parameter name="pINotify"type="+uhIAdrcNtf"/>
<Parameter name="cookie"type="Uint32"/>
<Parameter name="notifs"type="uhAdrc_NtfSet_t"/>

<Method name="Unsubscribe” output="void">
<Parameter name="pINotify”type="*uhIAdrcNtf"/>
<Parameter name="cookie"type="Uint32"/>
<Parameter name="notifs"type="uhAdrc_NtfSet_t"/>

<Method name="GetSuppModes” output="uhAdrc_ModeSet_t"/>
<Method name="SetMode"output="void">
<Parameter name="mode” type="uhAdrc_Mode_t"/>

<Method name:”GetMode”output=”uhAdrc_Mode_t”/ >
<Method name="GetActualMode” output="uhAdrc_Mode_t"/>

<Interface id="urn'MPEG-M3W/INF/uhlAdreNtf” name="uhlAdrcNtf">
<Method name="OnSubscriptionChanged” output="void">
<Parameter name="cookie”type="Uint32"/>
<Parameter name="notifs"type="uhAdrc_NtfSet_t"/>

<Method name="OnActualModeChanged” output="void">
<Parameter name="cookie"type="Uint32"/>
<Parameter name="actualMode” type="uhAdrc_Mode_t"/>

simply in a single Service.

Based on the information in Table 1, an audio
player application for example can request an
audio dynamic range controller functionality.
Fig. 8 shows a sequence diagram with the com-

pleted set of input parameters when the applica-

tion requests.

The application requests the audio dynamic
range controller to the Service Manager by
giving the umMPEG-M3W/LC/ADRC. Upon
receiving the request, the Service Manager

checks the Logical Component description for

- 124 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

DHRBENO0SYN A102 M1S 20064 3¥

Application

Service Manager RRE

isServiceAvailable (“urn:MPEG-M3W/LC/ADRC")

Return; true

getinstanceForLogicalComponent

(“urn:MPEG-M3W/LC/ADRC")

___Return: handler to

getServicelDForLC (“urn:MPEG-
M3W/LC/ADRC")

instantiateService |
(uri-MPEG-NM3VW/ServicervendorA/DynRange Controller”)

Return: service handler

 urn:MPEG-M3W/Service/VendorA/DynRangeController

Fig. 8. Requesting Service that implements urn:MPEG-M3W/LC/ADRC

what interfaces are required for the requested
functionality. It finds out that wn'MPEG
-M3W/LC/ADRC requires urn:MPEG-M3W/
INF/uhlAdre and urn:MPEG-M3W/INF/
uhlAdreNtf, So it seeks in the Service descrip-
tion whether there is at least one Service that
implements the required interfaces and finds
that the Service whose identification is given
by un:MPEG-M3W/Service/ VendorA/
DynRangeController. So the Service Manager
asks the RRE to instantiate the Service and
then returns the handler to the application.
Suppose later that the middleware gets an
implementation of the audio controller from oth-
er vendors. Vendor B also provides an im-
plementation of the Logical Components in
Table 1. However, unlike Vendor A that imple-
ments an audio dynamic range controller in a
single Service, Vendor B implements it by hav-
ing dependency on the other interfaces. Table
3 shows the Vendor B's Service description.
After insertion of Vendor B’s Service to the

middleware, when processing the same request

such as the one shown in Fig. 8, the Service
Manager has to decide which Service should
be instantiated since there are two Services that
implement the requested Logical Component.
This decision process 1is inserted after
getService]DForLC and before instantiate-

Service calling to the RRE.

5. Conclusion

The M3W is a service-based middleware that
18 dedicated for multimedia applications. Through
the M3W, MPEG will offer a set of standardized
APIs while their implementations are provided by
the Service(s). Since the Services are developed
by third parties, there is a necessity to have a
mechanism to bind the Logical Component and
the Service. This binding will provide in-
formation about which Services implement a cer-
tain Logical Component.

In this paper, we describe the usage of XML
in providing the binding between the Logical

Component and the Services. Both the Logical

- 125 -

Modeling Service based on XML Schema for MPEG Multimedia Middieware SIIUEINONSYA H10E H18 20064 38

Table 3. Service description implemented by Vendor B

<?xml version="1.0" encoding="UTF-8"7>

<Component xmlns="http://mccb.icu.ac.kr/m3w”

xmins:UED="urn:mpeg:mpeg21:2003:01-DIA-NS"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xsi:schemaLocation="http://mccb.icu.ac.kr/m3w - D:\MPEG\Schemas\M3W Service.xsd">
<ComponentID>urm:MPEG-M3W/Component/VendorB/AudioController</ComponentID>
<ComponentTitle>VendorB--AudioController</ComponentTitle>

<ComponentDescription>Provide implerneﬁtation for audio controller</ComponentDescription>
<Creator>

<CreatorName>Vendor B Inc.</CreatorName>

<CreatorWebsite>http://www.vendorb.com</CreatorWebsite>
</Creator>

<Availablelnterfaces>
<Interface>

<InterfacelD>urn:MPEG-M3W/INF/uhlAavl</InterfacelD>
<InterfaceName>uhlAavl</InterfaceName>
<Interfacelmplementors>
<ServicelD>urm:MPEG-M3W/Service/VendorB/AudioLeveler</ServiceID>
</InterfaceImplementors>
</Interface>
<Interface>

<InterfacelD>urn:MPEG-M3W/INF/uhlAavINtf</InterfacelD>
<InterfaceName>uhlAavINtf</InterfaceName>
<Interfacelmplementors>
<ServicelD>urn:MPEG-M3W/Service/VendorB/AudioLeveler</ServicelD>
</InterfaceImplementors>
</Interface>
<Interface>
<InterfacelD>urn:-MPEG-M3W/INF/uhlAdrc</Interfacel D>
<InterfaceName>uhlAdrc</InterfaceName>
<Interfacelmplementors>
<ServiceID>urn:MPEG-M3W/Service/V. endorB/DynRangeController</ ServicelD>
</Interfacelmplementors>
</Interface>
<Interface>
<InterfacelD>urn:MPEG-M3W/INF/uhlAdrcNtf</InterfacelD>
<InterfaceName>uhlAdrcNtf</InterfaceName>
<Interfacelmplementors>
<Service]D>urn:MPEG-M3W/Service/VendorB/DynRangeController</ServicelD>
</Interfacelmplementors>
</Interface>
</AvailableInterfaces>
<Services>
<Service>

<ServicelD>um:MPEG-M3W/Service/VendorB/AudioLeveler</ServicelD>

- 126 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

DIZUEIMC 09X 10 RI15 20061 38

</Service>
<Service>

<RequiredInterfaces>

</RequiredInterfaces>
</Service>
</Services>
</Component>

<ServicelnvocationType>in-process</Servicelnvocation Type>

<ServiceID>urn'MPEG-M3W/Service/VendorB/DynRangeController</ServicelD>
<ServicelnvocationType>in-process</ServicelnvocationType>

<InterfacelD>urn:MPEG-M3W/INF/uhlAavi</InterfacelD>
<InterfaceID>urn:MPEG-M3W/INF/uhlAavINtf</Interfacel D>

Component and the Service are modeled with
XML description so that the middleware by the
Service Manager can manage them. Together,
the Service Manager, the Logical Component
description, and the Service description are the
key elements that make it possible the trans-
parent access from the application to the
Service. We also present a simple example of
how the XML Schema models the Logical
Component and the Service. Through the ex-
ample, we show how the descriptions are used
and how the transparent access in M3W be-
comes possible with the usage of XML
technology.

References

{1] MPEG Systems Group.WD 3.0 of ISO/IEC
23004-3 Component Model. ISO/IEC JTCl/
SC29/WG11/N7918. Bangkok, Thailand.
Jan 2006.

[2] MPEG Systems Group. WD 3.0 of ISO/IEC
23004-1 Architecture. ISO/IEC JTCl/ SC29/
WG11/N7917. Bangkok, Thailand. Jan 2006.

[3] MPEG Systems Group. WD 3.0 of ISO/IEC
23004~2 Multimedia APIL ISO/IEC JTCI/
SC29/WG11/N7599. Nice, France. October
2005.

[4] MPEG Systems Group. M3W Tutorial.
ISO/IEC TC JTCI/SC29/WG11/N7607. Nice,
France. Oct 2005.

[5] Hendry,. et. al. Modeling M3W Logical
Service using XML Schéma. ISO/IEC
JTCI/SC29/WG11/M12590. Nice, France.
Oct 2005.

[6] Hendry, et. al. M3W Service Manager,
Service, and Metadata. ISO/IEC TC JTCl/
SC29/WG11/M12196. Poznan, Poland. Jul
2005.

[7] Hendry,. et. al. Response for CfP on MPEG
Multimedia Middleware (M3W). ISO/IEC
TC JTCI/SC29/WG11/M11871 Busan, South
Korea. Apr 2005.

[8] MPEG. Call for Proposals on Multimedia
Middleware (M3W). ISO/IEC TC JTCI/
SC29/WG11/N6981. Hong Kong, China.
Jan 2005.

[9] Gelissen, Jean H.A. White paper on M3W:

- 127 -

Modeling Service based on XML Schema for MPEG Multimedia Middleware

BIYEINOORAX A10# K12 20064 38

Middleware for MPEG applications. http://
www.idt.mdh.se/rtmm/rtmm-philips-
mpeg.pdf. 2005.

{10] MPEG Requirements/Systems/MDS Group.
MPEG Multimedia Middleware: Context and
Objective. ISO/IEC TC JTCI/SC29/WG11/
N6335. Munchen, Germany. Mar 2004.

[11] MPEG Requirements/Systems Group. MPEG
Multimedia Middleware Requirements v.2.0.
ISO/IEC TC JTCI/SC29/WG11/N6835, Palma
de Mallorca, Spain. Oct 2004.

[12] Birbeck, Mark, et. al. Professional XML 2™
Edition. Wrox Press Ltd. United States.
2002.

[13] Wagner, Matthias,. et. al. An XML-based
Multimedia Middleware for Mobile Online
Auctions. International Conference on
Enterprise Information System (ICEIS)
2001. Portugal. 2001.

[14] Open Services Gateway Initiative (OSGi).
OSCAR: An OSGi framework implemen-
tation. http://oscar.objectweb.org/.

[15] Universal Home API (UHAPI). UHAPI
Specification 1.1. http://www.uhapi.org/home

[16] XMLSpy' ™ Documentation. http://www.
altova.com/download_doc.html.

K&
Hendry

» 1997'@ 89: University of Indonesia
Faculty of Computer Science (34}
+ 2005 29 FARBANGE, TR (H4Ah
+ 20059 2¥~4EAl dFARF A AR
« B4 &ot: gE v o] DRM/IPMP, MPEG-21, MPEG-
A/E

Munchurl Kim

<1989 29¥: AEdstn, Az (FEA}
19921 124¥: University of Florida

Electrical & Computer Engineering (23 A})
» 199613 84%: University of Florida

Electrical & Computer Engineering (8FA})
+ 19979 19 ~20013 29: ETRI Wujc]o] A48 g2
£ 2001 29 ~EA: FFARFAYGY Bag
c@AZoriRYe B8 F X, oisd ZEiedo]

DMB/IPTV, MPEG-4/7/21, MPEG-A/E

- 128 -

