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Role of Interleukin-4 in Atherosclerosis
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Vascular endothelial cell injury or dysfunction has been implicated in the onset and progres-
sion of cardiovascular diseases including atherosclerosis. A number of previous studies have
demonstrated that the pro-oxidative and pro-inflammatory pathways within vascular endothe-
lium play an important role in the initiation and progression of atherosclerosis. Recent evi-
dence has provided compelling evidence to indicate that interleukin4 (IL-4) can induce pro-
inflammatory environment via oxidative stress-mediated up-regulation of inflammatory media-
tors such as cytokine, chemokine, and adhesion molecules in vascular endothelial cells. In
addition, apoptotic cell death within vascular endothelium has been hypothesized to be
involved in the development of atherosclerosis. Emerging evidence has demonstrated that IL-4
can induce apoptosis of human vascular endothelial cells through the caspase-3-dependent
pathway, suggesting that IL-4 can increase endothelial cell turnover by accelerated apoptosis,
the event which may cause the dysfunction of the vascular endothelium. These studies will
have a high probability of revealing new directions that lead to the development of clinical strat-
egies toward the prevention and/or treatment for individuals with inflammatory vascular dis-
eases including atherosclerosis.
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INTRODUCTION

Activation or dysfunction of the vascular endothelium
has been proposed to play a crucial role in the early
events in the development of atherosclerosis (Gimbrone
et al., 2000; Toborek and Kaiser, 1999; Toborek ef al,
2002a). One of the most important functions of the vascular
endothelium is to regulate inflammatory reactions. The
development of inflammatory reactions is a normal
defense mechanism in response to injury or activation of
the vessel wall. The physiological significance of such
reactions is to maintain and repair the normal structure
and function of the vessel wall. Excessive inflammatory
reactions, however, can lead to severe tissue damage and
are associated with vascular pathophysiology, including
the progression of atherosclerotic plaque formation (Toborek
and Kaiser, 1999; Berliner et al., 1995). It is now widely
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believed that atherosclerosis is an inflammatory disease
of the vessel wall.

Inflammatory reactions in the vascular endothelium are
primarily regulated through the production of inflammatory
mediators (Lee et al., 2004a; Ross, 1999). In fact, enhanced
expression of pro-inflammatory ‘cytokines (e.g., tumor
necrosis factor-o; TNF-a), chemokines (e.g., monocyte
chemoattractant protein-1; MCP-1), and adhesion molecules
(e.g., intercellular cell adhesion molecule-1; ICAM-1 and
vascular cell adhesion molecule-1; VCAM-1) in vascular
endothelial cells and their close interactions facilitate
recruiting and adhering inflammatory cells into the vessel
wall, and thus stimulate transendothelial migration, which
can be considered an early atherogenic process (Davies
et al., 1993; Reape and Groot, 1999). For example, ICAM-
1 and VCAM-1 stimulate adhesion and transmigration of
blood leukocytes onto and across the vascular endothelium.
Both MCP-1 and, to a lesser extent, TNF-a are potent
chemoattractive factors, which play a significant role in
recruiting blood-born inflammatory cells into the vessel
wall. In addition, TNF-a is a strong inducer of expression
of a spectrum of pro-inflammatory mediators as well as of
inflammatory reactions in vascular endothelium (Lukacs et



al., 1995; Paober, 1998; Strieter et al., 1989; Toborek ef al.,
2002a). ' ‘ '

It has been described that the expression of inflam-
matory mediators is regulated at the transcriptional level
through activation of specific transcription factors (Lee et
al., 2001a, 2001b, 2003; Stanimirovic et al., 2001; Toborek
ef al., 2002b). The promoter region of inflammatory genes
contains potential binding sites for a variety of transcrip-
tion factors, including nuclear factor-«B (NF-kB), activator
protein-1 (AP-1), cAMP responsive element-binding pro-
tein (CREB), SP-1, and signal transducers and activators
of transcription (STAT-1 and STAT-6), etc. (Fig. 1). Com-
peling body of evidence has indicated the critical role of
oxidative stress in molecular regulatory pathways leading
to activation of these transcription factors and gene ex-
pression. It is now generally accepted that oxidative stress
up-regulates the expression of pro-inflammatory mediator
genes via activation of redox-responsive transcription
factors. Indeed, activation of NF-kB and AP-1 are con-
sidered to be a part of a general regulation of a number of
inflammatory gene expressions by cellular oxidative stress
and/or intracellular glutathione levels (Arrigo, 19989;
Bouloumie et al., 1999; Lakshminarayanan et al., 1996;
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Schreck et al., 1992; Wung ef al.; 1997). For example,
expression of the inflammatory cytokine TNF-o gene is
induced by increased oxidative stress through activation
of AP-1 and NF-«B (Guha et al., 2000; Lee et al., 20013,
2001b; Rahman and MacNee, 2000; Verhasselt et al.,
1998). In addition, recent evidences from our group and
others have demonstrated that not only AP-1 and NF-xB
but also other transcription factors, such as SP-1, CREB,
STAT1, and STAT3, may belong to the family of trans-
cription factors whose activity is regulated by oxidative
stress and alterations in celluiar redox status (Grosch and
Kaina, 1999; lwata ef al., 1997; Lee et al., 2001¢, 2001d,
2002, 2003; Madamanchi et al, 2001; Simon et al,
1998).

Interleukin-4 (IL-4) is a pleiotropic immunomodulatory
cytokine secreted by T-helper 2 (TH2) lymphocytes,
eosinophils, and mast cells (Paul, 1991; Rocken et al.,
1991). IL4 is present at high levels in tissues of patients
with chronic inflammatory diseases, where it may play a
critical role in the disease progression. Indeed, elevated
levels of IL-4 were detected in atherosclerotic lesions
(Sasaguri et al, 1998). Additionally, a growing body of
evidence indicates that IL-4 may play a role in athero-
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Fig. 1. Schematic representation of promoter regions of the human inflammatory genes showing the location of the transcription factor binding
sites. Abbreviations: TNF-a, tumor necrosis factor-o; IL-1B, interleukin-13; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; IL-8,
interleukin-8: VCAM-1. vascular cell adhesion molecule-1: ICAM-1. intercellular adhesion molecule.
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genesis through induction of inflammatory responses,
such as up-regulation of VCAM-1 (Galea et al., 1991; Lee
et al., 2001d) and MCP-1 (Lee et al., 2003; Rollins and
Pober, 1991). IL-4 may also be considered as a pro-
oxidative cytokine which can increase the oxidative potential
of target cells (Brinckmann ef al., 1996; Lee et al., 2001c,
2001d).

Although oxidative stress- and inflammation-induced
endothelial cell dysfunction have been reported to play a
critical role in the development of atherosclerosis, the
detailed molecular signaling mechanisms underlying this
process by pro-inflammatory cytokines and the potential
involvement of antioxidant-sensitive mechanisms are not
yet fully understood. This review will specifically focus on
the pro-oxidative and pro-inflammatory mechanisms of
vascular endothelial cell injury by IL-4.

THE PRO-OXIDATIVE AND PRO-INFLAMMA-
TORY MECHANISMS OF IL-4-INDUCED VAS-
CULAR ENDOTHELIAL CELL DYSFUNCTION

Induction of oxidative stress and pro-oxidative
processes in IL-4-stimulated vascular endothelial
cells

Oxidative stress has been implicated in atherogenesis
(DiCorleto and Chisolm, 1986; Gimbrone et al., 1990;
Hennig et al., 1996) and vascular endothelial cells are
particularly sensitive to disturbances in the redox steady
state (Hennig and Chow, 1988). It is also well known that
oxidative stress may induce changes in cellular membrane
structure, fluidity, transport, and antigenic characteristic as
well as in disturbances in fibrinolytic pathway and pro-
stacyclin synthesis (Hempel et al., 1990; Holvoet and
Collen, 1994). These abnormalities may ultimately contribute
to endothelial cell injury, which is one of the earliest steps
in the development of atherosclerotic lesions (Ross,
1993). In addition, it has been suggested that oxidative
injury may regulate the expression of redox-sensitive
genes, including those encoding for pro-inflammatory
mediators (Yla-Herttuala, 1992). Indeed, recent evidences
from our group and others demonstrated that IL~4 can
increase the oxidation potential of various cell types. For
example, IL-4 treatment of human vascular endothelial
cells (HUVEC) enhances the intracellular oxidizing potential,
as indicated by an increase in 2’,7'-dichlorofluorescein
(DCF) fluorescence (Fig. 2) (Lee et al., 2001d).

The reticulocyte-type 15-lipoxygenase (15-LO-l) is a lipid
peroxidizing enzyme that converts free and/or esterified
polyunsaturated fatty acids (e.g., linoleic acid or arachidonic
acid) to hydroperoxy derivatives, such as 13S-hydroperoxy-
9Z,11E-octadecadienoic acid (13S-HPODE) and 15-hydro-
peroxy-5Z,87,11Z,13E-eicosatetraenoic acid (15-HPETE).
In cellular systems 13-HPODE and 15-HPETE are rapidly

(A) (B)

Fig. 2. IL-4 treatment up-regulates the intracellular oxidizing reactions
in human vascular endothelial cells as indicated by DCF fluorescence.
HUVEC were either untreated (A) or treated with 10 ng/mL of IL-4 (B)
for 3 h. Photomicrographs from confocal laser-scanning microscopy
visualizing oxidative stress as DCF fluorescence emission. Blue color
on the pseudocolor scale reflects low level of cellular oxidation, yellow
intermediate, red high, and white the highest level of cellular oxidative
stress (Lee et al., 2001d).

reduced to 13-hydroxy-9Z,11E-octadecadienoic acid (13S-
HODE) and 15-hydroxy-5Z,8Z,11Z,13F-eicosatetraenoic
acid (15-HETE), respectively. 15-LO-I has been implicated
in atherogenesis (Feinmark and Cornicelli, 1997; Kihn
and Chan, 1997) and this hypothesis is based on the
observations that the purified enzyme is capable of
oxidizing low density lipoproteins (LDL) to an atherogenic
form (Belkner et al., 1998; Sparrow et al., 1998) and that
15-LO-I protein colocalizes in atherosclerotic lesions with
epitopes of oxidized LDL (Yl&-Herttuala et al., 1990). The
recent finding that a specific 15-LO-I inhibitor attenuated
the development of atherosclerosis in cholesterol-fed
rabbits (Sendobry et al, 1997) and that 12/15-LO-I
knockout mice develop less pronounced atherosclerosis
when crossed with apoE knockout mice (Cyrus et al.,
1999) appear to support this pro-atherogenic hypothesis.
Because of the pathophysiological importance of 15-LO-i
in atherosclerosis, the regulation of 15-LO- expression
has developed into a major field in lipoxygenase research.
Several lines of experimental evidence indicate that IL4
induces the expression of the 15-LO-l in human peripheral
monocytes (Conrad ef al., 1992), alveolar macrophages
(Levy et al., 1993), colorectal carcinoma cells (Kamitani et
al., 1998), WI-26 pulmonary epithelial cells (Profita et al.,
1999), and the lung carcinoma cell line A549 (Brinckmann
et al., 1996). In addition, we have shown that IL-4 up-
regulates the transcription of the 15-LO-l gene in human
vascular endothelial cells and this process may involve
the activation of a variety of transcription factors, such as
STAT6, activator protein-2 (AP-2), GATA motif-binding
transcription factor-1 (GATA-1), nuclear factor-1 (NF-1),
and SP-1, for which putative binding sites exist in the 5'-



flanking region of the human 15-LO-I gene (Lee et al.,
2001c).

Gene expression profile in IL-4-stimulated vascu-
lar endothelial cells

Microarray analysis is one of the most advanced and
emerging molecular biological technologies, and it has
been widely adopted for analyzing the global gene
expression profiles in vivo and in vitro (Watson et al.,
1998; Schulze and Downward, 2001). Previous studies
have demonstrated the potential of this technology for
investigating molecular pathophysiological mechanisms
involved in a variety of human diseases. In fact, micro-
array technology has been used as a novel experimental
approach to analyze alterations in gene expression in
cancer (Golub et al., 1999), atherosclerosis (Hiltunen ef al.,
2002), stroke (Bowler et al., 2002), Alzheimer’s disease
(Ginsberg et al., 2000}, HIV infection (Geiss et al., 2000),
schizophrenia (Mirnics et al, 2000), and muscular
dystrophy (Chen et al., 2000).

Recently, we performed microarray analysis using the
Affymetrix GeneChip® Human Genome U133A Arrays and
provided the first quantitative large-scale gene expression
analysis of IL-4-stimulated human vascular endothelial cells
(Lee et al., 2004b). Our results identified 147 differentially
regulated genes that are responsible for the regulation of
inflammatory responses, apoptosis, signal transduction,
transcription factors, metabolism, and several unknown
function (Table I). Because IL-4 is involved in the early
stages of atherogenesis, these results could contribute to
a deeper understanding of fundamental insights of patho-
physiological mechanisms involved in atherosclerosis at
the level of gene expression and provide a foundation for
development of therapeutic strategies for vascular diseases.

Table I. Summary of altered gene expression in human vascular
endothelial cells treated with interleukin-4 (Lee ef al., 2004b)

Number of genes”

Functional categories : .
Up-regulation Down-regulation

Adhesion molecules 8 1
Apoptosis 3 0
Cytokines, chemokines and receptors 2 3
Growth factors and receptors 0 4
Signal transduction 16 4
Transcription factors 16 4
Others (metabolism, etc.) 47 15
Unknown 14 10
Total 106 41

*Genes that are significantly up-regulated or down-regulated at least 2-
fold changes compared to control cell cultures (P < 0.05).
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Induction of adhesion molecule expression in IL-
4-stimulated vascular endothelial cells

Vascular cell adhesion molecule-1 (VCAM-1) is a 110
kDa member of the immunoglobulin gene superfamily first
described ‘as a cytokine-inducible endothelial adhesion
protein (Osborn et al., 1989). It mediates cell-cell interac-
tions via binding to its integrin counter receptor, i.e., very
late antigen-4 (VLA-4), which may be involved in the
recruitment of mononuclear leukocytes to the vascular
lesions in early atherosclerosis (Elices et al., 1990; Cybulsky
and Gimbrone, 1991). Thus, VCAM-1 stimulates adhesion
of lymphocyte and monocytes to the surface of the
vascular endothelium (Libby and Galis, 1995). In addition,
eosinophils and basophils, but not neutrophils, can bind to
endothelial cells via VCAM-1-VLA-4 interaction (Schieimer
et al., 1992). This adhesion molecule is expressed primarily
on endothelial cells; however, other cell types, both vascular
and non-vascular cells, are also capable of expressing
VCAM-1 (Barks et al., 1997; Simmons et al., 1992).

VCAM-1 expression in vascular endothelial cells has
been widely known to be up-regulated by a variety of pro-
inflammatory stimuli, such as interleukin-1p (IL-1B), TNF-
o or lipopolysaccharide (LPS). Additionally, IL-4 was shown
to increase the adhesiveness of leukocytes to human
vascular endothelial cells via up-regulation of VCAM-1
(Galea et al., 1991; Thornhill et al., 1990). IL-4 can also
synergize IL-13-, TNF-a- or LPS-induced VCAM-1 gene
expression in vascular endothelial cells (Barks et al,
1997; Blease et al, 1998; Masinovsky et al, 1990).
Functional analysis of the human VCAM-1 promoter
demonstrated that several transcription factors including
GATA, NF-kB, AP-1, interferon regulatory factor-1 (IRF-1),
and SP-1 are associated with activation of VCAM-1 gene
expression in response to IL-18 and TNF-o (Fig. 1)
(lademarco et al., 1992; lademarco et al., 1993; Neish ef
al., 1992; Neish ef al., 1995). Studies on the activity of the
VCAM-1 gene promoter in endothelial cells have shown
that up-regulation of VCAM-1 gene expression by IL-1p,
TNF-a, and LPS depends on two adjacent kB sites located
at positions -77 and -63 relative to the transcription
initiation site (lademarco et al., 1992; Neish et al., 1992).
Moreover, AP-1 can mediate TNF-a-induced VCAM-1
expression interacting with NF-xB (Ahmad et al., 1998).
Despite our knowledge of molecular regulatory mechanisms
of TNF-o. or LPS-induced VCAM-1 overexpression in
vascular endothelial cells, only limited information is
currently available on possible mechanisms of IL-4-
induced VCAM-1 gene expression. Surprisingly, several
studies from our group and others have found that IL-4-
mediated VCAM-1 expression is independent on both NF-
kB and AP-1 activation (Lavie et al., 1999; Lee ef al,
2001d; McCarty et al, 1995; Wright et al., 1999). It was
reported that among known transcription factors which
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have specific binding sites in the promoter region of the
human VCAM-1 gene, only activation of SP-1 was observed
when human vscular endothelial cells were treated with
IL-4, suggesting that IL-4 up-regulates VCAM-1 gene ex-
pression in vascular endothelial cells at the transcriptional
level via activation of SP-1 transcription factor. In contrast,
NF-«B, AP-1, and IRF-1 do not appear to be involved in
the signal transduction cascade. (Lee et al., 2001d).

Another adhesion molecule regulated by IL-4 in vascular
endothelial cells is E-selectin. E-selectin is selectively
expressed on activated endothelial cells and plays a key
role in mediating early leukocyte-endothelial interactions
such as initial attachment and rolling during an inflam-
matory response. A compelling body of evidence indicates
the crucial role of E-selectin in the pathogenesis of
atherosclerosis. For example, the expression,of E-selectin
was detected in predominantly fibrous plaques and lipid-
containing plagues of human coronary arteries (Davies et
al., 1993). It was also found that /n vivo E-selectin up-
regulation correlates the infiltration of polymorphonuclear
leukocyte (PMN) and blood leukocyte (PBL) in a well-
established inbred pig trafficking model (Binns et al.,
1996). It is well documented that E-selectin is a silent
gene in vascular endothelium and rapidly up-regulated at
the transcriptional level following exposure to a series of
pro-inflammatory stimuli, such as TNF-a, IL-13, and LPS
(Luscinskas and Gimbrone, 1996; Tamaru and Narumi,
1999; Whelan, 1996). In contrast, treatment of endothelial
cells with IL-4 suppresses IL-1B- or TNF-a-stimulated E-
selectin gene transcription (Bennett et al., 1997; Thornhill
and Haskard, 1990; Whelan, 1996). Direct effects of IL-4
on E-selectin expression in human vascular endothelial
cells, however, remain unclear. Recently, we have provided
new evidence to strongly indicate that IL-4 could directly
up-regulate MRNA and protein expression of E-selectin in
human umbilical vein endothelial cells (HUVEC) (Lee et
al., 2004b). These results raise the possibility that E-selectin
may play an important role in IL-4-mediated inflammatory
pathways in vascular endothelium.

Induction of chemokine expression in IL-4-stimu-
lated vascular endothelial cells

The recruitment of inflammatory cells such as monocytes
and macrophages and their migration throughout the
endothelium are thought to be critical early pathologic
events in atherogenesis. These processes are directly pro-
moted by chemokines, which are shown in recent studies
to be closely related to the progression of atherosclerotic
processes (Gu et al., 1998, 1999; Rollins, 1997). Chem-
okines can be divided into two subfamilies, CXC and CC
chemokines, based on structural and genetic considera-
tions (Baggiolini et al., 1997). Among a variety of chemo-
kines, monocyte chemoattractant protein-1 (MCP-1) is of

critical significance in the early stages of atherosclerosis.
Human MCP-1, a 76-amino acid with an N-terminal
pyroglutamic acid, is a member of the CC chemokine
family and plays a crucial role in monocyte chemotaxis
and transmigration. A compelling body of evidence
indicates the potential role of MCP-1 in the pathogenesis
of atherosclerosis. Both MCP-1 protein and mRNA
expression have been detected in early athero-
sclerotic lesions by immunostaining, Northern blot analysis,
and in situ hybridization (Nelken et al., 1991; Seino ef al.,
1995; Takeya et al., 1993; Yla-Herttuala ef al., 1991).
Furthermore, MCP-1 deficiency significantly reduced
atherosclerosis in low density lipoprotein (LDL) receptor-
deficient mice fed a high cholesterol diet (Gu et al., 1998).
In a similar study, the selective absence of CCR2, the
receptor for MCP-1, markedly decreased atherosclerotic
lesion formation in apolipoprotein (apo) E-deficient mice
(Boring et al., 1998). On the other hand, Aiello et al.
(1999) reported that overexpression of MCP-1 accelerat-
ed atherosclerosis in apoE-knockout mice. MCP-1 is
expressed and released by a variety of cell types, including
vascular endothelial cells, smooth muscle cells, monocytes/
macrophages, and fibroblasts, in response to various
stimuli such as inflammatory cytokines including IL-4, LPS,
platelet-derived growth factor (PDGF), and interferon-y
(IFN-y) (Bouloumie et al., 1999; Rollins and Pober, 1991;
Strieter et al., 1989; Taubman et al., 1992; Wung et al.,
1997; Zhou et al., 1998). Although recent evidence indicates
that IL-4 may stimulate the synthesis and secretion of
MCP-1 in human vascular endothelial cells, the molecular
regulatory mechanisms of MCP-1 expression by this
cytokine is not yet fully understood.

The MCP-1 promoter has been shown to contain specific
binding sequences for the redox-responsive transcription
factors NF-xB and AP-1 (Shyy et al., 1998). In fact, NF-xB
and AP-1 have been known to be activated in response to
alterations of cellular redox status in a wide range of cells,
leading to the up-regulation of a number of pro-inflam-
matory genes including MCP-1 (Goebeler et al., 2001;
Shyy et al., 1990; Ueda et al., 1997; Wung et al., 1997).
However, our group has shown that treatment of HUVEC
with IL-4 does not result in activation of NF-xB or AP-1
and induction of the inflammatory genes in response to IL-
4 is independent of these transcription factors (Lee ef al.,
2001c, 2001d). Therefore, the transcriptional regulation of
MCP-1 expression by IL-4 in human vascular endothelial
cells appears to be unique among a variety of biological
systems.

Signal transducers and activators of transcription (STAT)
transcription factors are latent cytoplasmic proteins that
are activated by phosphorylation of a specific tyrosine
residue and transduce a signal from a cytokine receptor.
Phosphorylated STATs dimerize and rapidly translocate



into the nucleus, where they bind to specific DNA elements,
activating transcription of target genes. To date, seven
mammalian STAT family proteins have been identified as
STAT1, STAT2, STAT3, STAT4, STAT5a, STATSb, and
STAT6 and each protein has been shown to be activated
by distinct cytokines (lhle, 1996; Schindler and Dranell,
1995). Recently, Takeda and Akira (2000) have indicated
the essential roles of each STAT family protein in cytokine-
mediated biological responses through studies of gene
targeted knockout mice, suggesting that STAT transcription
factors act as critical intermediates in cytokine-dependent
gene induction. Indeed, biological effects of IL-4 might be
mediated by the activation of transcription factors of the
STAT family. For example, it was demonstrated that IL-4
can specifically increase the STAT6-DNA binding activity,
which appears to be a critical mechanism of IL-4-induced
up-regulation of 15-lipoxygenase-l expression (Heydeck
et al., 1998; Lee et al., 2001c; Schindler and Dranell, 1995).
However, the possible relation between IL-4 and other
STAT family proteins is not well defined. Specifically, the
role of STAT1 activation in IL-4-induced alteration of
endothelial cell metabolism remains unclear. Structural
analysis of the 5'-flanking region of human MCP-1 gene
reveals the existence of a potential binding site for STAT1
transcription factor (Fig. 1) (Shyy et al., 1990; Zhou et al.,
1998). Recent studies from our group specifically focused
on the role of STAT1 in IL-4-stimulated MCP-1 gene
expression in human vascular endothelial celis (Lee et al.,
2003). It was found that dose-dependent increases in
STAT1-DNA binding activity were detected in nuclear
extracts prepared from HUVEC stimulated by IL-4 treat-
ment. These results are in agreement with the report by
Chang et al. (2000), who demonstrated that IL-4 can
activate STAT1 in colon cancer cell lines, leading to growth
inhibition. The role of STAT1 in MCP-1 gene expression
was further confirmed by transient transfection experiments
with the reporter plasmid constructs of the MCP-1 pro-
moter (Lee et al., 2003). Indeed, these results provide the
first evidence that STAT1 signaling pathways may be
critically involved in the transcriptional regulatory mecha-
nisms of IL-4-induced MCP-1 expression.

Induction of cytokine expression in IL-4-stimula-
ted vascular endothelial cells

Interleukin-6 (IL-6) is a multifunctional pro-inflammatory
cytokine of 212 amino acid residues and produced by
endothelial cells, mononuclear phagocytes, fibroblasts,
activated T lymphocytes, and various neoplasms such as
cardiac myxomas, bladder cancer, and cervical cancer.
Previous studies have demonstrated that IL-6 plays a
major role in the mediation of inflammatory and immune
responses initiated by infection or injury. Indeed, elevated
IL-6 levels have been reported in patients with a variety of
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diseases, including rheumatoid arthritis (Madhok et al.,
1993), inflammatory bowel disease (Hyams ef al., 1993),
and malignancies such as myeloma, lymphomas, and
ovarian cancer (Dunbar and Nienhuis, 1993; Kurzrock et
al., 1993; Watson et al., 1993). Additionally, a compelling
body of evidence indicates the crucial role of IL-6 in the
pathogenesis of cardiovascular disease including athero-
sclerosis (Cesari et al., 2003; Libby et al., 2002; Ridker et
al., 2000a, 2000b; Ross, 1999). For example, the mRNA
and protein expression of IL-6 have been detected in
human atherosclerotic lesions (Kishikawa et al., 1993;
Seino et al., 1994). IL-6 has also been found in the
atherosclerotic plaques of apoE-knockout mice aorta and
administration of exogenous IL-6 in apoE-knockout mice
greatly exacerbated atherosclerctic lesion formation
(Huber et al., 1999; Sukovich et al., 1998). Moreover, it has
been shown that IL-6 stimulates the growth of vascular
smooth muscle cells in a PDGF-dependent manner
(Ikeda et al., 1991).

IL-6 is rapidly up-regulated at the transcriptional level
following exposure to a series of inflammatory stimuli,
such as TNF-a, IL-1B, and LPS (Craig et al, 2000;
Kishimoto, 2005). Although recent evidence indicates that
IL-4 synergistically amplifies the TNF-a-, IL-1B- or LPS-
induced production of IL-6 protein in human vascular
endothelial cells (Chen and Manning, 1996), the molecular
basis for the induction of this cytokine by IL-4 has not
been clearly elucidated. Our recent data showing that IL-4
significantly induced the expression of IL-6 mRNA and
increased IL-6 production appear to be the first to
document the stimulatory effect of IL-4 on IL-6 gene
expression in human vascular endothelial cells (Lee ef al.,
2004b). Functional analysis-of the human IL-6 promoter
demonstrated that several transcription factors including
AP-1, NF«xB, cAMP responsive element-binding protein
(CREB), and nuclear factor-IL6 (NF-IL6) are associated
with induction of IL-6 gene expression (Fig. 1). However,
detailed studies on the molecular signaling mechanisms
of IL-6 expression in human vascular endothelial cells
remain unclear and are to be further investigated.

Signaling mechanisms of IL-4-induced pro-inflam-
matory pathway in vascular endothelium

A number of previous studies have demonstrated that
the binding of pro-inflammatory cytokines to their receptors
triggers the mitogen-activated protein kinase (MAPK)
signaling pathways that ultimately results in up-regulation
of a wide variety of inflammatory genes, including cytokines,
chemokines and adhesion molecules, via activation of
inflammation-related transcription factors (Davis, 1993;
Seger and Krebs, 1995). Three MAPK pathways with
distinct regulation and functions have been described in
mammalian cells; extracellular signal-regulated kinases
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(ERK-1/2), c-Jun N-terminal kinases/stress-activated protein
kinases (JNK/ SAPKs), and p38 MAPK (Pearson et al.,
2001). Among these, much attention has been focused
on the activation and regulation of the p38 MAPK
signaling pathway in inflammation research because p38
MAPK has been identified as key signaling molecules as
therapeutic targets for a variety of inflammatory diseases
(Badger et al., 2000; Behr et al., 2001; Collis et al., 2001;
Hull et al., 2002; Ju et al., 2002, 2003; Kawashima et al.,
2001; Kobayashi et al., 2002; Kumar et al., 2003; Ma et
al., 1999; Waetzig ef al, 2002). Compelling body of
evidence from in vivo and in vitro studies has indicated
that the p38 MAPK pathway is involved in the induction of
pro-inflammatory mediators. For example, inhibitors of
p38 MAPK have been shown to have anti-inflammatory
effects through the inhibition of the expression of pro-
inflammatory cytokines (e.g., TNF-o, IL-1B, and IL-6),
cyclooxygenase 2 (COX2), and inducible nitric oxide
synthase (INOS) (Adams et al., 2001; Badger et al., 2000;
Guan et al, 1998; Han et al., 1994; Lee et al., 1994,
Saccani et al., 2002). Additionally, p38 MAPK has been
implicated in the regulation of other pro-inflammatory
mediators such as chemokines and adhesion molecules.
Recent evidence shows that production of chemokines
MCP-1 and interleukin-8 (IL-8) are mediated via p38
MAPK signaling pathway in response to inflammatory stimuli
in monocytes/macrophages, vascular smooth muscle cells,
and endothelial cells (Hall et al., 2005; Suzuki et al., 2004;
Westra et al., 2005). it was also demonstrated that pretre-
atment of activated endothelial cells with highly selective
p38 MAPK inhibitors markedly reduced the mRNA and
protein expression of adhesion molecules such as E-
selectin, ICAM-1, and VCAM-1 (Ju et al., 2003; Westra et
al., 2005), suggesting an important role for p38 MAPK in
vascular endothelial inflammation and dysfunction. Further-
more, several compounds which specifically inhibit p38
MAPK, such as SB242235, RWJ-67657, VX-745, BIRB-
976BS, and RO3201195, have been reported to advance
to human clinical trials with promising pharmacokinetics
and clinical activities (Fijen et al., 2001; Kumar et al., 2003).
These previous preclinical and clinical studies strongly
support the crucial role of p38 MAPK signaling pathway in
inflammation and in the development of therapeutic
strategies towards the treatment of inflammatory diseases
including atherosclerosis.

It is well documented that two major signal transduction
pathways, such as Janus kinase (JAK)-signal transducers
and activators of transcription (STAT) and phosphoinositide-
3 kinase (PI3K), are involved in the signaling cascade
initiated by IL-4 (Pernis ef al., 1995). Emerging evidence
has also established the p38 MAPK pathway as one
element of the IL-4 signaling cascade. For example, Hunt
et al. (2002) reported that IL-4 can activate p38 MAPK in

the human primary monocytes as well as in the CT6 T-cell
line and BA/F3 pro-B-cells. It was also shown that the p38
MAPK pathway is rapidly activated in splenic B lympho-
cytes by treatment with IL-4, and this activation is required
for IL-4 induction of SOCS3 expression (Canfield et al.,

257 (A)

Relative Fold induction
(VCAM-1 mRNA/B-Actin mRNA)

Relative Fold Induction
(E-selectin mMRNA/B-Actin mRNA)

3.5 - *#

2.5 4 *#
*#

Relative Fold induction
(MCP-1 mRNA/B-Actin mRNA)

Control 0 WHI-P154 LY294002 SB202190

IL-4 (10 ng/mL) + Inhibitors

Fig. 3. Effects of selective inhibitors on IL-4-induced up-regulation of
pro-inflammatory mediators in human vascular endothelial cells.
HUVEC were pretreated with WHI-P154 (JAK inhibitor), LY294002
{PI3K inhibitor), or SB202190 {p38 MAPK inhibitor) for 1 h and treated
with 10 ng/mL of IL-4 for 4 h. The mRNA levels of VCAM-1 (A), E-
selectin (B), and MCP-1 (C) were determined by real-time reverse
transcriptase-polymerase chain reaction (RT-PCR). Data shown are
means + SE of 4 determinations. *Statistically significant compared
with the control group (P<0.05). #Values in the groups treated with IL-4
plus inhibitor are significantly different from the IL-4-treated group
{P<0.05).



2005). Moreover, our most recent findings demonstrate that
selective inhibitors for JAK/STAT, PI3K, and p38 MAPK
signaling pathways significantly attenuate overexpression
of pro-inflammatory mediators in IL-4-stimulated human
vascular endothelial cells (Fig. 3; unpublished data).
These data strongly support the crucial role of p38 MAPK
in IL-4-mediated signaling cascade leading to up-regula-
tion of pro-inflammatory mediators in vascular endothelium.

THE APOPTOTIC MECHANISMS OF IL4-
INDUCED VASCULAR ENDOTHELIAL CELL
DYSFUNCTION

Endothelial cell apoptosis may be involved in the devel-
opment and the progression of atherosclerosis (Bjorkerud
and Bjorkerud, 1996; Bochaton-Piallat et al., 1995; Han et
al., 1995; Isner ef al., 1995). For example, a high incidence
of apoptotic cells is detected in atherosclerotic lesions,
suggesting that apoptosis of endothelial cells might parti-
cipate in remodeling of the vessel wall during atherogenesis
(Han et al., 1995). In addition, apoptotic smooth muscle
cells are observed in balloon-injured arteries in rats
(Bochaton-Piallat et al., 1995; Han et al., 1995) and in
cholesterol-fed rabbits (Kochx et al., 1996). However, the
mechanisms that induce apoptosis in atherosclerotic
lesions remain unclear.

Endothelial cells in atherosclerotic lesions may undergo
apoptosis in response to the pro-inflammatory cytokines
produced by activated macrophages and T lymphocytes
as a consequence of the ongoing local immune and
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inflammatory response characteristic of atherogenesis
(Geng and Libby, 1995). Previous studies have demon-
strated that cytokines, such as IL-13, TNF-o, and IFN-y,
can promote apoptosis of human vascular endothelial
cells (Bennett et al, 1994; Pohiman and Harlan, 1989;
Polunovsky et al, 1994). Additionally, our group has
provided the first evidence that IL-4 can induce apoptosis
of human vascular endothelial cells and the caspase-3-
dependent pathway is critically involved in this process
(Lee et al., 2000), suggesting that IL-4 can increase
endothelial cell turnover by accelerated apoptosis, the
event which may alter the function of the vascular endo-
thelium and thereby promote atherogenesis. Interestingly,
it was shown that inhibition of protein synthesis may be
required to promote complete DNA fragmentation of
vascular endothelial cells. For example, a variety of pro-
inflammatory stimuli including IL-1B, TNF-a, IL-4, and LPS
have been reported to induce endothelial cell apoptosis in
the presence of a protein synthesis inhibitor (Gottlieb et
al., 1994; Lee et al., 2000; Pohiman and Harlan, 1989;
Polunovsky et al., 1994). Results of these studies suggest
that inducible or constitutive cytoprotective proteins control
endothelial cell survival. However, such proteins which
may control IL-4-induced apoptosis of vascular endothelial
cells remain yet to be characterized.

CONCLUSION

Oxidative stress-mediated pro-inflammatory environment
and apoptotic cell death within vascular endothelium in
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Fig. 4. Schematic diagram of the molecular signaling mechanisms of IL-4-induced vascular endothelial cell dysfunction and development of
atherosclerosis. Abbreviations: JAK/STAT, Janus kinase-signal transducers and activators of transcription; PI3K, phosphoinositide-3 kinase; p38
MAPK, p38 mitogen-activated protein kinase; 15-LO-I, 15-lipoxygenase-l; IL-8, interleukin-6; MCP-1, monocyte chemoattractant protein-1; VCAM-1,

vascular cell adhesion molecule-1.
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response to a variety of extracellular stimuli such as TNF-a,
IL-1B, and LPS have been known as major mechanisms
of vascular injury leading to the development of athero-
sclerosis. It appears that IL-4 can be in part responsible
for these effects (Fig. 4). Indeed, evidence indicates that
IL-4 can induce intracellular oxidative stress, overexpression
of pro-inflammatory mediators including cytokine, chemo-
kine and adhesion molecules, and inflammatory reactions
in vascular endothelial cells. In addition, IL-4 can increase
apoptotic cell death of vascular endothelium. More impor-
tantly, recent results showing potential involvement of
antioxidant-sensitive mechanisms and p38 MAPK-mediated
signaling pathway in this process will have significant
clinical implications for the development of therapeutic
drugs for atherosclerosis specifically targeted against pro-
oxidative and pro-inflammatory pathways.
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