Degradation of Clavulanic Acid During the Cultivation of Streptomyces clavuligerus; Instability of Clavulanic Acid by Metabolites and Proteins from the Strain

  • Ishida Kenji (Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Hung Trinh Viet (Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Lee Hei-Chan (Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Liou Kwang-Kyoung (Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Shin Chang-Hun (CDK BIO Research Institute) ;
  • Yoon Yeo-Joon (Division of Nano Science and Department of Biochemistry, Ewha Woman's University) ;
  • Sohng Jae-Kyung (Institute of Biomolecule Reconstruction, Sun Moon University)
  • Published : 2006.04.01

Abstract

Clavulanic acid (CA) produced by Streptomyces clavuligerus is degraded during the bacterial cultivation. The degradation was examined in three different aspects, including physical, chemical, and enzymatic effects, in order to understand the degradation during the cultivation. The result showed that CA was unstable in the production medium containing ammonium salts and amino acids, owing to ammonium ions and amine groups. In addition, the degradation was not only due to instability of CA by metabolites and proteins, but also enzymes from S. clavuligerus such as $\beta-lactamase$ and penicillin-binding proteins. However, the degradation caused by these enzymes was not highly significant compared with the degradation during the cultivation, owing to irreversible reactions between CA and enzymes.

Keywords

References

  1. Alexander, D. C. and S. E. Jensen. 1998. Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J. Bacteriol. 180: 4068- 4079
  2. Andrietta, M. G. S., S. R. Andrietta, M. V. N. Rodrigues, C. O. Hokka, and G. E. Serra. 1997. Selection of industrial complex medium for cephalosporin C production. J. Brazilian Soc. Microbiol. 28: 109-113
  3. Doran, J. L., B. K. Leskiw, S. Aippersbach, and S. E. Jesen. 1990. Isolation and characterization of a $\beta$-lactamase-inhibitory protein from Streptomyces clavuligerus and cloning and analysis of the corresponding gene. J. Bacteriol. 172: 589- 598 https://doi.org/10.1128/jb.172.2.589-594.1990
  4. Haginaka, J., T. Nakagawa, and T. Uno, 1981. Stability of clavulanic acid in aqueous solutions. Chem. Pharm. Bull. 29: 3334-3341 https://doi.org/10.1248/cpb.29.3334
  5. Lee, H. C., J. K. Sohng, H. J. Kim, D. H. Nam, C. N. Seong, J. M. Han, and J. Ch. Yoo. 2004. Cloning, expression, and biochemical characterization of dTDP-glucose 4,6-dehydratase gene (gerE) from Streptomyces sp. GERI-155. J. Microbiol. Biotechnol. 14: 576-583
  6. Jensen, S. E., A. S. Paradkar, R. H. Mosher, C. Anders, P. H. Beautty, M. J. Brumlik, A. Griffin, and B. Barton. 2004. Five additional genes are involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. Antimicrob. Agents Chemother. 48: 192-202 https://doi.org/10.1128/AAC.48.1.192-202.2004
  7. Kang, S. G.., D. H. Lee, A. C. Ward, and K. J. Lee. 1998. Rapid and quantitative analysis of clavulanic acid production by the combination of pyrolysis mass spectrometry and artificial neural network. J. Microbiol. Biotechnol. 8: 523-530
  8. Lynch, H. C. and Y. Yang. 2004. Degradation products of clavulanic acid promote clavulanic acid production in cultures of Streptomyces clavuligerus. Enzyme. Microb. Technol. 34: 48-54 https://doi.org/10.1016/j.enzmictec.2003.08.003
  9. Mayer, A. F. and W. D. Deckwer. 1996. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivation. Appl. Microbiol. Biotechnol. 45: 41-46 https://doi.org/10.1007/s002530050646
  10. Mellado, E., L. M. Lorenzana, M. Rodriguez-Saiz, B. Diez, P. Liars, and J. L. Barredo. 2002. The clavulanic acid biosynthesis cluster of Streptomyces clavuligerus: Genetic organization of the region upstream of the car gene. Microbiology 149: 1427-1438
  11. Ogawara, H. and S. Horikawa. 1980. Penicillin-binding proteins in Streptomyces cacaoi. The effects on penicillinbinding proteins and the antibacterial activities of$\beta$-lactams. J. Antibiotics 33: 620-624 https://doi.org/10.7164/antibiotics.33.620
  12. Paradkar, A. S., K. A. Aidoo, A. Wong, and S. E. Jesen. 1996. Molecular analysis of a $\beta$-lactam resistance gene encoded within the cephamycin gene cluster of Streptomyces clavuligerus. J. Bacteriol. 178: 6266-6274 https://doi.org/10.1128/jb.178.21.6266-6274.1996
  13. Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2004. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71
  14. Perez-Llarena, F. J., A. Rodriguez-Garcia, F. J. Enguita, J. F. Martin, and P. Liras. 1998. The pcd gene encoding piperideine-6-carboxylate dehydrogenase involved in biosynthesis of $\beta$-aminoadipic acid is located in the cephamycin cluster of Streptomyces clavuligerus. J. Bacteriol. 180: 4753-4756
  15. Perez-Llarena, F. J., J. F. Martin, M. Galleni, J. J. Coque, J. L. Fuente, J. Frere, and P. Liras. 1997. The bla gene of the cephamycin cluster of Streptomyces clavuligerus encodes a class A $\beta$-lactamase of low enzymatic activity. J. Bacteriol. 179: 6035-6040 https://doi.org/10.1128/jb.179.19.6035-6040.1997
  16. Roubos, J. A., P. Krabben, W. T. A. M. de Laat, R. Babuska, and J. J. Heijnen. 2002. Clavulanic acid degradation in Streptomyces clavuligerus fed-batch cultivations. Biotechnol. Prog. 18: 451-457 https://doi.org/10.1021/bp020294n
  17. Ryu, Y. G., W. Jin, J. Y. Kim, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
  18. Zhao, X. Q., K. R. Kim, L. W. Sang, S. H. Kang, Y. Y. Yang, and J. W. Suh. 2005. Genetic organization of a 50-kb gene cluster isolated from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15: 346-353