Antimicrobial Edible Film Developed from Defatted Corn Germ Meal Fermented by Bacillus subtilis

  • Kim Hyung-Wook (Division of Bioscience & Biotechnology, Konkuk University) ;
  • Roh I-Woo (Division of Bioscience & Biotechnology, Konkuk University) ;
  • Kim Kyung-Mi (Division of Bioscience & Biotechnology, Konkuk University) ;
  • Jang In-Suk (Division of Bioscience & Biotechnology, Konkuk University) ;
  • Ha Sang-Do (Department of Food Science & Technology, Chung-Ang University) ;
  • Song Kyung-Bin (Department of Food Science & Technology, Chungnam National University) ;
  • Park Sang-Kyu (Material Science & Engineering, Kwangju Institute of Science & Technology) ;
  • Lee Won-Young (Department of Food Engineering, Sangju National University) ;
  • Youn Kwang-Sup (Department of Food Science & Technology, Catholic University of Daegu) ;
  • Bae Dong-Ho (Division of Bioscience & Biotechnology, Konkuk University)
  • Published : 2006.04.01

Abstract

In order to extend the shelf-life of packaged or coated foods, an antibacterial edible film containing 1.8% of BLS was developed from the defatted corn germ meal, which had been fermented with Bacillus subtilis under the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. Water vapor permeability of the fermented film $(88.3mg/cm^2\;h)$ was higher than those of the normal corn germ films $(75.8mg/cm^2\;h)$. Protein solubility of the fermented film was also higher than ordinary corn germ film at the pH range of 3-10. The fermented corn germ film had higher tensile strength and lower % elongation (elongation rate) than the ordinary corn germ film. The antimicrobial activity of the film was more than 50% of the maximum activity after film production with heat treatment at $90^{\circ}C$ and pH adjustment to 9. When the corn germ protein film with bacteriocin-like substance was applied on the mashed sausage media containing E. coli, the bacterial growth inhibition was higher than the ordinary corn protein film.

Keywords

References

  1. ASTM (American Society for Testing Methods). 1995. Standard test method for tensile properties of thin plastic sheeting (D882-95a). In: Annual Book of American Standards Testing Methods. Philadelphia, U.S.A
  2. ASTM (American Society for Testing Methods). 1995. Standard test method for water vapor transmission of materials (E96-95b). In: Annual Book of American Standards Testing Methods. Philadelphia, U.S.A
  3. Cagri, A., Z. E. Ustunol, and T. Ryser. 2003. Antimicrobial edible film and coatings. J. Food Protect. 67: 833-848
  4. Cho, D. L., K. Na, E. K. Shin, H. J. Kim, K. Y. Lee, J. H. Go, and C. S. Choi. 2001. A study on the preparation of antibacterial biopolymer film. J. Microbiol. Biotechnol. 11: 193-198 https://doi.org/10.1159/000063010
  5. Cho, S. J., S. K. Lee, B. J. Cha, Y. H. Kim, and H. S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain $KSO_3$. FEMS Microbiol. Lett. 223: 47-51 https://doi.org/10.1016/S0378-1097(03)00329-X
  6. Cho, S. Y. and C. Rhee. 2004. Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. Lebensm.-Wiss. u.-Technol. 37: 833-839 https://doi.org/10.1016/j.lwt.2004.03.009
  7. Chobert, J. M. and M. Z. Zitohy. 1988. Solubility and emulsifying properties of caseins modified enzymatically by Streptococcus aureus V8 protease. J. Agric. Food Chem. 36: 220 https://doi.org/10.1021/jf00079a055
  8. Choi, H. J., M. J. Seo, J. C. Lee, C. I. Cheigh, H. Park, C. Ahn, and Y. R. Pyun. 2005. Heterologous expression of human $\beta$-defensin-1 in bacteriocin-producing Lactococcus lactis. J. Microbiol. Biotechnol. 15: 330-336
  9. Khouti, Z. and J. P. Simon. 1997. Detection and partial characterization of a bacteriocin produced by Carnobacterium piscicola 213. J. Industr. Microbiol. Biotechnol. 19: 28-33 https://doi.org/10.1038/sj.jim.2900412
  10. Kim, H. J., J. H. Kim, J. H. Son, H. J. Seo, S. J. Park, N. S. Paek, and S. K. Kim. 2004. Characterization of bacteriocin produced by Lactobacillus bulgaricus. J. Microbiol. Biotechnol. 14: 503-508
  11. Kim, H. W., K. M. Kim, E. J. Ko, S. K. Lee, S. D. Ha, K. B. Song, S. K. Park, K. S. Kwon, and D. H. Bae. 2004. Development of antimicrobial edible film from defatted soybean meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 14: 1303-1309
  12. Kim, T. W., S. H. Jung, J. Y. Lee, S. K. Choi, and S. H. Park. 2003. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol. 13: 119-124
  13. Kim, Y. S. and S. D. Kim. 1994. Antifungal mechanism and properties of antibiotic substances produced by Bacillus subtilis YB-70 as a biological control agent. J. Microbiol. Biotechnol. 4: 296-304
  14. Kumar, C. G. and S. K. Anand. 1998. Significance of microbial biofilms in food industry: Review. Int. J. Food Microbiol. 42: 9-27 https://doi.org/10.1016/S0168-1605(98)00060-9
  15. Lee, J. H., M. J. Kim, D. W. Jeong, M. J. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H. Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from kimchi. J. Microbiol. Biotechnol. 15: 428-433
  16. Longares, A., F. J. Monahan, E. D. O'Riordan, and M. O'Sullivan. 2004. Physical properties and sensory evaluation of WPI films of varying thickness. Lebensm.-Wiss. u.- Technol. 37: 545-550 https://doi.org/10.1016/j.lwt.2003.12.005
  17. Maria, P. and S. Mats. 2005. Water vapor permeability and mechanical properties of mixed starch-monoglyceride films and effect of forming conditions. Food Hydrocolloids 19: 123-132 https://doi.org/10.1016/j.foodhyd.2004.04.021
  18. Mataragas, M., J. Metaxopoulos, M. Galiotou, and E. H. Drosinos. 2003. Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci. 64: 265- 271 https://doi.org/10.1016/S0309-1740(02)00188-2
  19. Mauer, L. J., D. E. Smith, and T. P. Labuza. 2000. Water vapor permeability, mechanical, and structural properties of edible $\beta$-casein films. Int. Dairy J. 10: 353-358 https://doi.org/10.1016/S0958-6946(00)00061-3
  20. Messi, P., M. Bondi, C. Savia, R. Battini, and G. Monicardi. 2001. Detection and preliminary characterization of a bacteriocin produced by a Lactobacillus plantarum strain. Int. J. Food. Microbiol. 64: 193-198 https://doi.org/10.1016/S0168-1605(00)00419-0
  21. Micard, V., R. Belamri, M. H. Morel, and S. Guilbert. 2000. Properties of chemically and physically treated wheat gluten. J. Agric. Food Chem. 48: 2948-2953 https://doi.org/10.1021/jf0001785
  22. Monti, J. C. and R. Jost, 1978. Enzymatic solubilization of heat-denatured cheese whey protein. J. Dairy Sci. 61: 1233 https://doi.org/10.3168/jds.S0022-0302(78)83711-4
  23. Moon, G. S., C. H. Kang, Y. R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocinproducing Enterococcus sp. from kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924- 931
  24. Motta, A. and A. Brandelli. 2003. Influence of growth conditions on bacteriocin production by Brevibacterium linens. Appl. Microbiol. Biotechnol. 62: 163-167 https://doi.org/10.1007/s00253-003-1292-9
  25. Oh, S. J., M. H. Kim, J. C. John, and W. W. Randy. 2003. Purification and characterization of an antilisterial bacteriocin produced by Leuconostoc sp. W65. J. Microbiol. Biotechnol. 13: 680-686
  26. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, T. J. Kwon, and H. H. Lee. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829- 835
  27. Parente, E. and A. Ricciardi. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52: 628-638 https://doi.org/10.1007/s002530051570
  28. Park, S. Y., Y. J. Yang, Y. B. Kim, and C. Lee. 2002. Characterization of subtilein, a bacteriocin form Bacillus subtilis CAU131. J. Microbiol. Biotechnol. 12: 228-234 https://doi.org/10.1159/000066574
  29. Pinchuk, I. V., P. Bressollier, I. B. Sorokulova, B. Verneuil, and M. C. Urdaci. 2002. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res. Microbiol. 153: 269-276 https://doi.org/10.1016/S0923-2508(02)01320-7
  30. Pol, H., P. Dawson, J. Acton, and A. Ogale. 2002. Soy protein isolate/corn-zein laminated films: Transport and mechanical properties. J. Food Sci. 67: 212-217 https://doi.org/10.1111/j.1365-2621.2002.tb11386.x
  31. Rhim, J. W., A. Gennadios, H. Akihiro, L. C. Weller, and A. H. Milford. 2000. Solubility, tensile, and color properties of modified soy protein isolate films. J. Agric. Food Chem. 48: 4937-4941 https://doi.org/10.1021/jf0005418
  32. Sabato, S. F., B. Ouattara, H. Yu, G. D'Aprano, C. Le Tien, M. A. Mateescu, and M. Lacroix. 2001. Mechanical and barrier properties of cross-linked soy and whey protein based films. J. Agric. Food Chem. 49: 1397-1403 https://doi.org/10.1021/jf0005925