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Abstract

In this paper, we study an asymmetric power fractionally integrated
GARCH model and find a region on which the process is stationary
ergodic and has long memory property.
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1. Introduction

The generalized autoregressive conditional heteroscedastic (GARCH) model was
proposed by Engle(1982) and Bollerslev(1986) to represent the dynamic evolution of
conditional variances and has been mainly applied to represent time series of high
frequency financial returns. For classical GARCH model, the returns series X,
is given by X=v g, where g, is independent white noise process with mean
zero and unit variance and vy, is the volatility, specified as a linear function

of the past squared returns. Recently, it is observed empirically that
autocorrelations of observations in various fields tend to decay very slowly
and remain fairly large for long lags. As a consequence, many researchers
have proposed extensions of generalized GARCH models which can produce
such long memory behaviour (see, for example, Ding and Granger(1996),
Baillie et al(1996), Bollerslev and Mikkelsen(1996), Hosking(1996), Robinson
and Zaffaroni(1997), Robinson and Henry(1999), Giraitis et al(2000b), Giraitis
et al(2005) etc.). Koulikov (2003) introduce martingale-difference
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autoregressive conditionally heteroskedastic (MD-ARCH( o)) model which has
long~=memory property in the sense that the process has non—-summable
autocovariance functions and covariance stationarity. On the other hand,
another generalization of the GARCH model is related with asymmetric

response of w? to positive and negative returns.
W{ o

In this paper, to represent simultaneously asymmetric volatility and long
memory, following asymmetric power fractionally integrated
GARCH({p,d,q){(abbreviated as APFIGARCH(p,d,q)) model is proposed:

X=y e, (1-0(INA-L)X,|1-3X)P=a,+(1-8(L)v, (1.1)

2 . q
where 7 denotes the lag operator, g=(0,1/2) <1>(L)=ZICI>,L', B(LFZ]B,-Lf

and vy, is a martingale difference sequence.

The objective of this paper is to consider a model (1.1) and to find a sufficient
condition under which the process is covariance stationary and has long memory
property. For APFIGARCH(1,d,1) process, we find and illustrate a coefficient
region on which the process is stationary and has long memory property.

2. Covariance Stationary and Long Memory

In this section, we introduce an asymmetric power f{ractionally integrated
GARCH model and examine its covariance stationarity and long memory property.

Giraitis et al(2000a) and Kazakevicius and Leipus (2002) show that a wide class
of GARCH model can be expressed in the framework of ARCH(w) process.
ARCH( co) process is given by

0

Xlijlg I3 Yy =at jZ\JIfIth’ (22)

where >0, =nj20&R} and ¢ t€Z is a sequence of ii.d non—negative
random variables.

Stationarity condition of ARCH(w0) sequences given by Giraitis et al(2000a)
imply absolute summability of the coefficients g :j>(0 and ultimately, short

memory nature of the process. For second-order stationary time series
X[:tezwith mean £X =y and lag-k autocovariance y FE (X ~(X )
we say that xhas short memory or long memory according to whether
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> Iy, is convergent or divergent. Absolute summability of 1 >0 s
k=—00

necessary to ensure convergence of the infinite series in the definition of Y,

in (2.2).
Asymmetric power GARCH model is given by

2 q )
X7y e, wh=a,+ Zla X -xX, )%+ Z]lep b (2.3)
= J=

where [y|<1, 6>0. a¢>0. a,B20(i=1,-~-,p,j=1,+,q) and ¢, is iid with

mean 0O and variance 1.
. . >a e | -ye )5+ 3B <1 .
stationarity and geometric ergodicity of the process and in that case the

process has short memory.
Equations (2.3) can be rewritten in the form of

implies the strictly

(1-BL)-ma(LNU X, -y X ) ¥=ma+ (1-B(L)v,, 2.4)

P . 7] .
where a([,)=;a,-[,', [3(L)=;B,L’, m=Ele |l-ye )8 v, =01X,1-vX) 5~ myb.

Asymmetric power FIGARCH model which is assumed to have both long
memory and asymmetry is defined by

(1-o(NA-D) X1~y X ) P=ma + (1-B(L)v,, (2.5)

with ge& (0,1/2). Alternative representations of the APFIGARCH model (2.5)
are as follows:

e+ (1= 2 (1= D) )1 X | -y X ), (2.6)
or
myt=a+ (AZBLL (1 py-a_qy, 2.7)

1-9(D)

Here equation (2.6) is a type of ARCH( c0).
From now on, we focus our attention on the following alternative to (2.7)

X=v e, vy ,=a+ _Z]ej—_](X*(_/-*lp*,_j), (2.8)
£
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where X'=(1X,|-yX)*® ej=%(ls,|—ye,)”, g =my® and
1-BL 4 y-d_q— - J
e (1m0 1= ge L

We make the assumptions:
Al. e rez 18 defined on the common probability space (Q,&,P), and

consists of i.i.d. copies of a random variable ¢, with E(ej)=1<.
A2. 5>0 and ej:jzogR{).

Then X'\-yhte”Z is a sequence of zero-centered innovations, where
X'-y'=y’(e’-1) and y, and ¢} are independent for each sz It follows
that E[X-y3]1=0 and E[X,-y"| Ft-1] for each rez It being the process
filtration, and hence Xi-yltEZ is a sequence of martingale differences

innovations. Because of this structure of innovations, the infinite series in
(2.8) converges without assuming the absolute summability of ©,:i=0-. Model

(2.8) is a type of MD-ARCH(co) model which extends the covariance
stationary GARCH sequence to the case of non—summable autocovariance.

Since the sequence of innovations X'-y':it€Z is formulated in terms of its

past history, it is useful to use Volterra series representation of (2.8) as
Giraitis et al(2000a) and Kazakevi¢ius and Leipus (2002) have shown. Model
(2.8) can be written in the form of

X=y'g, tp*,=akZOM(k,t), (2.9)

where for each re 7, sequence Mk, 1) k=0 is defined as:

M0, 0:=1,
Mk,Di= > 0, =0, (e -1, .., ~Dk=1).

2 =Jy =
Sk

(2.10)

Since y* in (2.8) involves the infinite series of weighted zero—centered
innovation  X7-wy?, nonnegativity of the process is not immediate from the

definition. Nonnegativity of y* in (2.9) with probability 1 and following
Theorem 2.1 are due to Koulikov(2003).
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Theorem 2.1 Under A1-A2 and

2[1ogj']ze§<m, (2.11)

£

E(a’;)—n?zoefq, (2.12)
£

the sequence {(X°,y*):te”Z} defined in (2.8), equivalently (2.9)-(2.10),

o - . .
converges a.e. on (€, J’P), and 1s stationary ergodic.

Theorem 2.2 Assume Al1-AZ and (2.12). Then the sequence {(X*,y*):t€ 7}
defined in (2.8) is covariance stationary, where for each (&2 and ,k=0:

EX'=a, Ey'=a,

2y 2

. . a“He,—1) e
E[(lpﬁk—a)(lp,*(’i”: 0 = Zz‘)el@ﬂk,
1-Eey-D2y 05"

=0

a’Fley-1)°

E[(Xy ma)( X -a)|=E[(w'. ,-a)(wi-a) ]+ —
1~ﬂsg—1)zzoej

0%

and {©°:k>0} is defined as ©}:=06,_, for 4>1.

FProof. The proof of Theorem 2.2 is essentially the same as that of Theorem
2 in Koulikov (2003) and hence is omitted.

3. APFIGARCH(1,d,1) Process

In most practical applications, relatively simple models such as
APFIGARCH(0,d,0), APFIGARCH(0,d,1), APFIGARCH(1,d,0), APFIGARCH(1,d,1)
provide a good representation of the real data.

In this section, we consider in detail the APFIGARCH(1,d,1) process with
O(L)=¢L, B(L)=BL in equation (2.7):

X=ye] (3.13)
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E 1—BL = —d_ S %
wimar (g (D) (X -w?) (3.14)
=at Ze,/’~1vf'_/" (3.15)

. * * 1 S
where Hle,l-ye)o=m X=X, -yX)5, yi=my?b, et=——(le | -ye)?

g

= X*[_ vy,
Note that

_ (/: _ . . — < F(/’— d) 1___ = _ ir 7
(-1) = F- a1 1 D= 3 = iy L /zo(j’)( 1)L

where f denotes the hypergeometric function, ie.

a- L alat Db+ 1) 2, alat 1(a+2)b(b+ Db+ 2)
1- 1-2:clc+1) X 3le(e=1)(c+ 2)

Fla,bicx)=at JU

and () the gamma function.
Define that

RO: E(X*)=a>0, d=(0,1/2)

R o<dizd peg Bei-DP303<1 where ze 1+B2)ze'2

& "o’ + 32 P O s d) 1 g
25};)9 0, tB% and 6/ EU+ 2D FQ1,-j-1;-d-j; o).
On the region which satisfies the conditions RO and R1, (X‘I,q;*l) given by

(3.13)-(3.15) is stationary ergodic and has long memory.

Since

z; 9< (a-$) " +(°2 B) (424 9qd+ B-1+a(B-1-d?)+ (a-B+ 1)(B-1)-(a
) (1-a-a?)

-B)d?+ (a—-B) 2+ 2(a-B)d, where B=—%%d%, if we assume that

E(g*o—1)2=2, region for long memory and covariance stationarity can be
illustrated as follows:
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<Figurel> APFIGARCH(1,d,1) with d=0.2 <Figure2> APFIGARCH(1.,d,1) with d=0.4
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