New Voltage Programming LTPS-TFT Pixel Scaling Down VTH Variation for AMOLED Display Woo-Jin Nam**a, Jae-Hoon Lee**a, Hee-Sun Shin**a, Jae-Hong Jeon b and Min-Koo Han a ### **Abstract** A new voltage-scaled compensation pixel which employs 3 p-type poly-Si TFTs and 2 capacitors without additional control line has been proposed and verified. The proposed pixel does not employ the V_{TH} memorizing and cancellation, but scales down the inevitable V_{TH} variation of poly-Si TFT. Also the troublesome narrow input range of V_{DATA} is increased and the V_{DD} supply voltage drop is suppressed. In our experimental results, the OLED current error is successfully compensated by easily controlling the proposed voltage scaling effects. **Keywords**: OLED, Current-scaling, Capacitance ## 1. Introduction Recently, organic light emitting diodes (OLEDs) displays demonstrate good-features such as high brightness and wide viewing angle by self-emissive characteristics [1]. However, the inevitable current non-uniformity of poly-Si TFT arrays due to the threshold voltage (V_{TH}) and the mobility (μ_{eff}) variations, which are caused mainly by crystallization such as excimer laser annealing (ELA), need to be improved for high-quality images [2]. Many pixel circuits have been reported in order to compensate the non-uniform OLED current (I_{OLED}) variation by the voltage or current programming methods [2-5]. In voltage programming method, the pixel panel is easily interfaced with the widely used voltage driver. However, each pixel circuit requires various considerations for compensating the V_{TH} and mobility non-uniformities of poly-Si TFTs as well as the supply voltage drop in the V_{DD} line [3-4]. The compensation pixel circuits use typically 4~6 poly-Si TFTs, 1~2 capacitors, 1~3 scan signals, 1~2 supply voltages. Therefore, the large area consumption of the compensation circuit in pixel layout seems inevitable. Manuscript received August 27, 2006; accepted for publication September 15, 2006. Corresponding Author: Woo-Jin Nam **E-mail**: jhlee@emlab.snu.ac.kr Tel: +02 880-7992 Fax: +02 871-7992 Furthermore, although the recent efficiency improvement of the OLED luminance is desirable, it may cause another side-effect reducing the input data range. Since the required current for full-brightness OLED should be in the 1 μ A-level, the input voltage range will be determined within 1~2 V due to the high-performance of poly-Si TFTs. The small range of the input data would cause the variation error in the OLED current controls. If the input data range is small, the variation effect of V_{TH} is dominant for the OLED current variation. The current variation may be too severe with regard to the small V_{TH} variation (± 15 %). The purpose of our work is to propose a new voltageprogrammed pixel design theory employing the voltagescaled programming. The proposed scheme increases the input data range and compensates the V_{TH} variation. In this paper, the simulation and experimental results successfully verified the proposed compensation theory. # 2. Proposed Voltage Scaling Theory Until now, in the voltage programmed pixel circuits, almost researches related to the high quality AMOLED pixel have focused on the V_{TH} memorizing and cancellation, which requires rather complicated compen-sation circuits in each pixel [3-5]. However, based on the improvements of the device process uniformity in the near-future, the V_{TH} variation would be reduced in progress. Therefore, the non-uniformity 'reduction' of poly-Si TFTs rather than the non- ^{**}Student Member, KIDS ^a School of electrical engineering, Seoul National University, Seoul, Korea. ^b School of Electronics, Telecommunications and Computer Engineering, Hankuk Aviation University, Gyeonggi-do, Korea. uniformity 'cancellation' may also be effective and feasible for compensating the non-uniformity. In this paper, we propose a new voltage programming method which compensates the current non-uniformity by the voltage scale-down scheme. Fig. 1 shows the proposed voltage-scale driving pixel, which is composed of 3 p-type poly-Si TFTs and 2 capacitors. The transistor T1 is a switch to address the data voltage (DATA) to pixel, and T2 is a driving transistor to flow an OLED current by its saturation regime. T3 is a transistor for compensation scheme and gives a capacitive coupling of C1 to the gate node of T2. Each capacitor C1 and C2 is a storage capacitor in parallel pair and the storage capacitance (C_{ST}) is C1+C2. In this circuit operation, the data voltage as well as V_{TH} is modulated and scaled down by the capacitive-coupling through C1 and C2 so that I_{OLED} is scaled down and the I_{OLED} variation is compensated by scaling down the nonuniform current flows. Fig. 1. Proposed AM-OLED pixel circuit (3 p-type poly-Si TFTs and 2 capacitors) employing a voltage-scaled programming. The proposed circuit operates as follows. When the SCAN is turned on from V_{DD} to V_{SS} and the DATA is still the previous one $(V_{DATA.N-1})$, the voltage (V_A) of node A is set to $V_{DATA.N-1} - V_{TH_T3}$ by T3 and the voltage (V_B) of node B is set to $V_{DATA.N-1}$ by T1. T3 is turned off because the SCAN is V_{SS} . When the present data $V_{DATA.N}$ is addressed, V_B is changed to $V_{DATA.N}$ and V_A is also changed from $V_{DATA.N-1} - V_{TH_T3}$ to $V_{DATA.N} - V_{TH_T3}$ by C1 coupling from the node B. The I_{OLED} flows by T2 without scale-down and is the same with I_{CONV} of the conventional 2-TFT. $$\begin{split} I_{OLED} &= 1/2 \cdot k \cdot \left(V_{GS_T2} - V_{TH_T2} \right)^2 \\ &= 1/2 \cdot k \cdot \left(V_{DATA.N} - V_{DD} - V_{TH_T2} \right)^2 = I_{CONV} \cdot \cdot \cdot \cdot (1) \\ \text{(Here, k is $\mu_{eff} \cdot C_{OX} \cdot W_{T2} / L_{T2}$ and $V_{TH} < 0$)} \end{split}$$ When the *SCAN* is turned off from V_{SS} to V_{DD} , T1 is turned off. T3 is turned on at the condition $V_{SCAN} > V_{DATA.N} - V_{TH_T3}$ during the *SCAN* off-transition. The node A is charged by the SCAN from $V_{DATA.N} - V_{TH_T3}$ to V_{DD} . It is noted that the node B is capacitively-coupled by the node A fluctuation (V_{fluc}) of $V_{DD} - V_{DATA.N} + V_{TH_T3}$. Fig. 3-17 illustrates the fluctuation of the node A by capacitive coupling from the SCAN signal. Denoting the node B coupling as ΔV_{B} , the I_{OLED} is expressed as follows, $$I_{OLED} = 1/2 \cdot k \cdot (V_{DATA.N} + \Delta V_B - V_{DD} - V_{TH_T2})^2$$ $$= 1/2 \cdot k \cdot \{C2/(C1+C2) \cdot (V_{DATA.N} - V_{DD} - V_{TH_T2})\}^2$$ $$= \{C2/(C1+C2)\}^2 \cdot I_{CONV} \cdot \dots \cdot (2)$$ Here, the ΔV_B is determined by C1 and C2: $\Delta V_B =$ $\{C1/(C1+C2)\}\cdot V_{fluc}$. And V_{TH} of T2 and T3 is assumed to be the same $(V_{TH T2} = V_{TH T3})$ by the identical line beam irradiation of excimer laser annealing [2,4]. In this equation, the scaling factor (α) is defined as C2/ (C1+C2). The I_{OLED} of the proposed pixel is finally scaled-down by a factor of α^2 compared with I_{CONV} of the conventional 2-TFT. If the capacitance C1 and C2 is the same, the scaling factor α is 0.5 and the OLED current is scaled down by $0.5^2 = 0.25$ of the conventional one. The current compensation scheme may be analyzed in equation (2). It is noted that the parameter V_{DATA}, V_{DD}, V_{TH} are scaled down by the scaling factor (α). The fact that the addressed V_{DATA} is scaled down indicates that the V_{DATA} input range is scaled up for the same I_{OLED} . In the viewpoint of V_{TH} , the proposed pixel circuit provides an effective reduction of the V_{TH} variation due to the process variation. If the scaling factor α is 1/3, for example, the inherent V_{TH} variation of $\pm 15\%$ from its average would be reduced to $\pm 5\%$ by a circuit effect. ## 3. Simulation and Fabrication In order to verify the proposed pixel circuit, the SPICE simulation and the fabrication were carried out. The SPICE model is RPI poly-Si TFT model (level = 36) and the simulation parameters for TFT and OLED are extracted from the measurements. The low-temperature (450 °C) p-type poly-Si TFTs are fabricated by the typical TFT process such as PECVD a-Si film deposition, ELA with line beam laser irradiation, and ion implantation for doping [6]. The size of poly-Si TFT is $W/L = 10 \ \mu m/10 \ \mu m$, and the measured V_{TH} is -2.11V and μ_{eff} is 80 cm²/V·s. The OLED is modeled as a diodeconnected TFT by fabrication and the threshold voltage of OLED is about 2 V. Fig. 2 shows the I_{OLED} measurement results according to the DATA inputs. In the conventional 2-TFT circuit, the DATA input required for $I_{OLED} = 0 \sim 1000 nA$ is from 8.6 V to 7.4 V, thus the data input range is 1.2 V. In the proposed circuits, in which the ratio of C1:C2 is 1:1, 2:1, 3:1, the DATA input required for $I_{OLED} = 0 \sim 1000 nA$ is increased up to 2.0 V, 2.7 V, 3.3 V, respectively. Since I_{OLED} varies sensitively according to $(V_{DATA} - V_{DD} - V_{TH})$, the increased input range of V_{DATA} contributes to suppressing the affect of V_{TH} variations. Fig. 3 shows the transient curves of voltage node B in the proposed pixel circuit. Node B changes with respect to 15 % V_{TH} variation (\pm 0.3 V), while that of conventional 2-TFT pixel does not change. From the equation of ΔV_B , the change of ΔV_B due to ΔV_{TH} is {C1/(C1+C2)}· ΔV_{TH} . If C1:C2 = 5:1 and ΔV_{TH} = \pm 0.3 V, ΔV_B would be changed by \pm 0.25 V. It is well consistent that the simulation results of the curve (a) and (c) exhibit \pm 0.24 V from 7.96 V of the curves (b). This shows that the proposed pixel reduces and compensates the V_{TH} non-uniformity of poly-Si TFTs. **Fig. 2.** Measurement results of the pixel current (I_{OLED}) according to the input data voltages in the conventional 2-TFT pixel and the proposed pixel with various scaling conditions (C1:C2 = 1:1, 2:1, 3:1). Fig. 3. Simulation results of the voltage node B of the storage capacitor when the same data voltage is addressed to the proposed pixel of C1:C2=5:1 which has a different threshold voltage (a) -2.41 V, (b) -2.11 V, and (c) -1.81 V. Fig. 4 shows the I_{OLED} error comparison when the V_{TH} of T2 and T3 is varied by \pm 0.3 V (\pm 15 %) from -2.1 V. The I_{OLED} errors were investigated at two reference current levels of I_{OLED} = 100 nA and 1 μ A around. The SPICE simulation results (Fig. 4a) show that, in the conventional pixel of which we can say the scaling factor (α) is 1, the OLED current variation due to +0.3 V variation of V_{TH} is 115 % at the 100 nA level and 51 % at the 1 μ A level, respectively. In the proposed pixels, the capacitance ratio of C1:C2 is varied from 1:1 to 5:1, thus the scaling factor from 1/2 to 1/6 is determined. The OLED current compensation is improved as the scaling effect is enhanced. When α is 1/6, the non-uniformity of I_{OLED} is considerably reduced to 20% from 115% at the 100 nA and no more than 8% from 51% at the 1 μ A, respectively, compared with the 2-TFT pixel. More over, since the V_{GS} (= $V_{DATA} - V_{DD}$) for I_{OLED} = 100 nA is relatively smaller than that for 1 μ A, V_{TH} variation portion in $(V_{DATA} - V_{DD} - V_{TH})$ is relatively large and the error would be increased in the small current level. The measurement results also present a similar trend with the simulation results as shown in Fig. 4b. To investigate the I_{OLED} error due to \pm 0.3 V of V_{TH} variation in real device, we used the equivalent measurement condition that the V_{DATA} , rather than V_{TH} , is varied with \pm 0.3 V in the identical circuit sample, as is reasonable from the equation (2). When α is 1/4, the non-uniformity of I_{OLED} is considerably reduced to 52 % from 172 % at the 100 nA and 16 % from 66 % at the 1 μ A, res-pectively, compared with the 2-TFT pixel. Based on the simulation and the measurement results, the error would be reduced to below 5 % when the scaling factor is optimized. Fig. 4. (a) Simulation and (b) measurement results of the I_{OLED} error comparison in the conventional 2-TFT pixel and the proposed pixel with various scaling factor (α) when the V_{TH} of T2 and T3 is varied by \pm 0.3 V (\pm 15 %) from -2.1 V. ## 4. Conclusions We have proposed a novel compensation scheme employing the voltage-scaled programming pixel which reduces the V_{TH} variation of poly-Si TFT rather than the V_{TH} memorizing and cancellation. By the proposed circuit effect, the V_{TH} could be scaled down and the non-uniform OLED current was successfully reduced and compensated for. The data input range was also increased by the scaling factor and the current variation sensitivity to V_{TH} variation could be lowered. The scaling factor was easily controlled by the capacitance ratio of C1 to C2. The proposed scheme also contributes to the suppression of the V_{DD} drop problem by employing the reported supply line elimination design. The proposed driving theory is promising for achieving uniform image in the voltage programming method. ### 6. References - [1] M. Stewart, R.S. Howell, L. Pires, and M.K. Hatalis, *IEEE Trans. on Electron Devices*, **48**, 845 (2001). - [2] S. J. Bae, H.S. Lee, J.Y. Lee, J.Y. Park, and C.W. Han, in *International Display Research Conference (IDRC) Dig.* (2000), p. 358. - [3] S.H. Jung, W.J. Nam, and M.K. Han, *IEEE EDL*, **25**, 690 (2004). - [4] S. M. Choi, and O.K. Kwon, in *Society for Information Displays (SID) Tech. Dig.* (2004), p. 260. - [5] J.H. Lee, W.J. Nam, S.H. Jung, and M.K. Han, *IEEE EDL*, **25**, 280 (2004). - [6] Y. M. Ha, in Society for Information Displays (SID) Tech. Dig. (2000), p.1116.