New Voltage Programming LTPS-TFT Pixel Scaling Down VTH Variation for AMOLED Display

Woo-Jin Nam**a, Jae-Hoon Lee**a, Hee-Sun Shin**a, Jae-Hong Jeon b and Min-Koo Han a

Abstract

A new voltage-scaled compensation pixel which employs 3 p-type poly-Si TFTs and 2 capacitors without additional control line has been proposed and verified. The proposed pixel does not employ the V_{TH} memorizing and cancellation, but scales down the inevitable V_{TH} variation of poly-Si TFT. Also the troublesome narrow input range of V_{DATA} is increased and the V_{DD} supply voltage drop is suppressed. In our experimental results, the OLED current error is successfully compensated by easily controlling the proposed voltage scaling effects.

Keywords: OLED, Current-scaling, Capacitance

1. Introduction

Recently, organic light emitting diodes (OLEDs) displays demonstrate good-features such as high brightness and wide viewing angle by self-emissive characteristics [1]. However, the inevitable current non-uniformity of poly-Si TFT arrays due to the threshold voltage (V_{TH}) and the mobility (μ_{eff}) variations, which are caused mainly by crystallization such as excimer laser annealing (ELA), need to be improved for high-quality images [2]. Many pixel circuits have been reported in order to compensate the non-uniform OLED current (I_{OLED}) variation by the voltage or current programming methods [2-5].

In voltage programming method, the pixel panel is easily interfaced with the widely used voltage driver. However, each pixel circuit requires various considerations for compensating the V_{TH} and mobility non-uniformities of poly-Si TFTs as well as the supply voltage drop in the V_{DD} line [3-4]. The compensation pixel circuits use typically 4~6 poly-Si TFTs, 1~2 capacitors, 1~3 scan signals, 1~2 supply voltages. Therefore, the large area consumption of the compensation circuit in pixel layout seems inevitable.

Manuscript received August 27, 2006; accepted for publication September 15, 2006.

Corresponding Author: Woo-Jin Nam

E-mail: jhlee@emlab.snu.ac.kr Tel: +02 880-7992 Fax: +02 871-7992

Furthermore, although the recent efficiency improvement of the OLED luminance is desirable, it may cause another side-effect reducing the input data range. Since the required current for full-brightness OLED should be in the 1 μ A-level, the input voltage range will be determined within 1~2 V due to the high-performance of poly-Si TFTs. The small range of the input data would cause the variation error in the OLED current controls. If the input data range is small, the variation effect of V_{TH} is dominant for the OLED current variation. The current variation may be too severe with regard to the small V_{TH} variation (± 15 %).

The purpose of our work is to propose a new voltageprogrammed pixel design theory employing the voltagescaled programming. The proposed scheme increases the input data range and compensates the V_{TH} variation. In this paper, the simulation and experimental results successfully verified the proposed compensation theory.

2. Proposed Voltage Scaling Theory

Until now, in the voltage programmed pixel circuits, almost researches related to the high quality AMOLED pixel have focused on the V_{TH} memorizing and cancellation, which requires rather complicated compen-sation circuits in each pixel [3-5]. However, based on the improvements of the device process uniformity in the near-future, the V_{TH} variation would be reduced in progress. Therefore, the non-uniformity 'reduction' of poly-Si TFTs rather than the non-

^{**}Student Member, KIDS

^a School of electrical engineering, Seoul National University, Seoul, Korea.

^b School of Electronics, Telecommunications and Computer Engineering, Hankuk Aviation University, Gyeonggi-do, Korea.

uniformity 'cancellation' may also be effective and feasible for compensating the non-uniformity.

In this paper, we propose a new voltage programming method which compensates the current non-uniformity by the voltage scale-down scheme. Fig. 1 shows the proposed voltage-scale driving pixel, which is composed of 3 p-type poly-Si TFTs and 2 capacitors. The transistor T1 is a switch to address the data voltage (DATA) to pixel, and T2 is a driving transistor to flow an OLED current by its saturation regime. T3 is a transistor for compensation scheme and gives a capacitive coupling of C1 to the gate node of T2. Each capacitor C1 and C2 is a storage capacitor in parallel pair and the storage capacitance (C_{ST}) is C1+C2. In this circuit operation, the data voltage as well as V_{TH} is modulated and scaled down by the capacitive-coupling through C1 and C2 so that I_{OLED} is scaled down and the I_{OLED} variation is compensated by scaling down the nonuniform current flows.

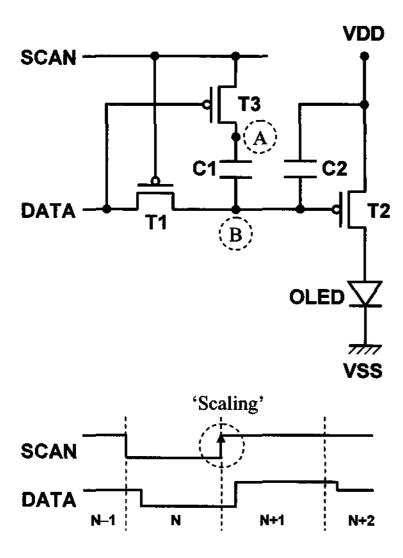


Fig. 1. Proposed AM-OLED pixel circuit (3 p-type poly-Si TFTs and 2 capacitors) employing a voltage-scaled programming.

The proposed circuit operates as follows. When the SCAN is turned on from V_{DD} to V_{SS} and the DATA is still the previous one $(V_{DATA.N-1})$, the voltage (V_A) of node A is set to $V_{DATA.N-1} - V_{TH_T3}$ by T3 and the voltage (V_B) of node B is set to $V_{DATA.N-1}$ by T1. T3 is turned off because the SCAN is V_{SS} . When the present data $V_{DATA.N}$ is addressed, V_B is changed to $V_{DATA.N}$ and V_A is also changed from $V_{DATA.N-1} - V_{TH_T3}$ to $V_{DATA.N} - V_{TH_T3}$ by C1 coupling from the node B. The I_{OLED} flows by T2 without scale-down and

is the same with I_{CONV} of the conventional 2-TFT.

$$\begin{split} I_{OLED} &= 1/2 \cdot k \cdot \left(V_{GS_T2} - V_{TH_T2} \right)^2 \\ &= 1/2 \cdot k \cdot \left(V_{DATA.N} - V_{DD} - V_{TH_T2} \right)^2 = I_{CONV} \cdot \cdot \cdot \cdot (1) \\ \text{(Here, k is $\mu_{eff} \cdot C_{OX} \cdot W_{T2} / L_{T2}$ and $V_{TH} < 0$)} \end{split}$$

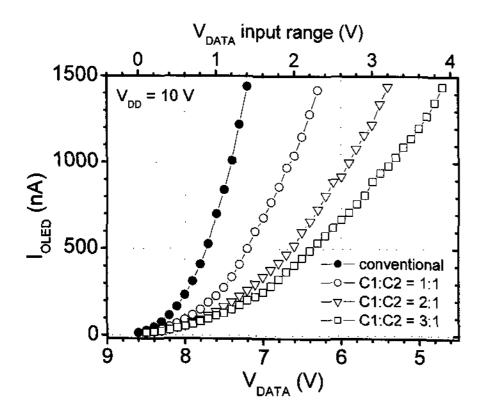
When the *SCAN* is turned off from V_{SS} to V_{DD} , T1 is turned off. T3 is turned on at the condition $V_{SCAN} > V_{DATA.N} - V_{TH_T3}$ during the *SCAN* off-transition. The node A is charged by the SCAN from $V_{DATA.N} - V_{TH_T3}$ to V_{DD} . It is noted that the node B is capacitively-coupled by the node A fluctuation (V_{fluc}) of $V_{DD} - V_{DATA.N} + V_{TH_T3}$. Fig. 3-17 illustrates the fluctuation of the node A by capacitive coupling from the SCAN signal. Denoting the node B coupling as ΔV_{B} , the I_{OLED} is expressed as follows,

$$I_{OLED} = 1/2 \cdot k \cdot (V_{DATA.N} + \Delta V_B - V_{DD} - V_{TH_T2})^2$$

$$= 1/2 \cdot k \cdot \{C2/(C1+C2) \cdot (V_{DATA.N} - V_{DD} - V_{TH_T2})\}^2$$

$$= \{C2/(C1+C2)\}^2 \cdot I_{CONV} \cdot \dots \cdot (2)$$

Here, the ΔV_B is determined by C1 and C2: $\Delta V_B =$ $\{C1/(C1+C2)\}\cdot V_{fluc}$. And V_{TH} of T2 and T3 is assumed to be the same $(V_{TH T2} = V_{TH T3})$ by the identical line beam irradiation of excimer laser annealing [2,4]. In this equation, the scaling factor (α) is defined as C2/ (C1+C2). The I_{OLED} of the proposed pixel is finally scaled-down by a factor of α^2 compared with I_{CONV} of the conventional 2-TFT. If the capacitance C1 and C2 is the same, the scaling factor α is 0.5 and the OLED current is scaled down by $0.5^2 = 0.25$ of the conventional one. The current compensation scheme may be analyzed in equation (2). It is noted that the parameter V_{DATA}, V_{DD}, V_{TH} are scaled down by the scaling factor (α). The fact that the addressed V_{DATA} is scaled down indicates that the V_{DATA} input range is scaled up for the same I_{OLED} . In the viewpoint of V_{TH} , the proposed pixel circuit provides an effective reduction of the V_{TH} variation due to the process variation. If the scaling factor α is 1/3, for example, the inherent V_{TH} variation of $\pm 15\%$ from its average would be reduced to $\pm 5\%$ by a circuit effect.


3. Simulation and Fabrication

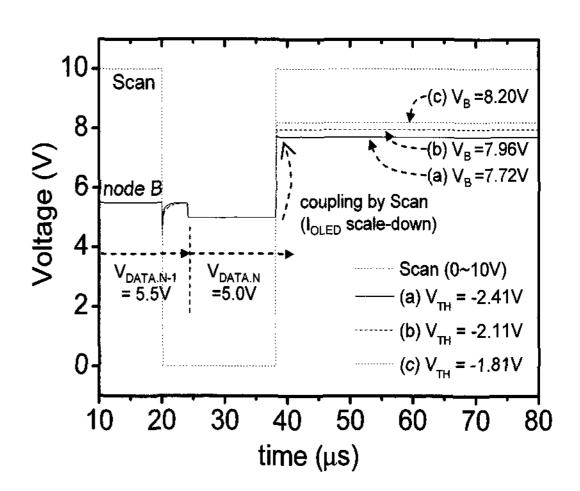
In order to verify the proposed pixel circuit, the SPICE simulation and the fabrication were carried out. The SPICE model is RPI poly-Si TFT model (level = 36) and the simulation parameters for TFT and OLED are

extracted from the measurements. The low-temperature (450 °C) p-type poly-Si TFTs are fabricated by the typical TFT process such as PECVD a-Si film deposition, ELA with line beam laser irradiation, and ion implantation for doping [6]. The size of poly-Si TFT is $W/L = 10 \ \mu m/10 \ \mu m$, and the measured V_{TH} is -2.11V and μ_{eff} is 80 cm²/V·s. The OLED is modeled as a diodeconnected TFT by fabrication and the threshold voltage of OLED is about 2 V.

Fig. 2 shows the I_{OLED} measurement results according to the DATA inputs. In the conventional 2-TFT circuit, the DATA input required for $I_{OLED} = 0 \sim 1000 nA$ is from 8.6 V to 7.4 V, thus the data input range is 1.2 V. In the proposed circuits, in which the ratio of C1:C2 is 1:1, 2:1, 3:1, the DATA input required for $I_{OLED} = 0 \sim 1000 nA$ is increased up to 2.0 V, 2.7 V, 3.3 V, respectively. Since I_{OLED} varies sensitively according to $(V_{DATA} - V_{DD} - V_{TH})$, the increased input range of V_{DATA} contributes to suppressing the affect of V_{TH} variations.

Fig. 3 shows the transient curves of voltage node B in the proposed pixel circuit. Node B changes with respect to 15 % V_{TH} variation (\pm 0.3 V), while that of conventional 2-TFT pixel does not change. From the equation of ΔV_B , the change of ΔV_B due to ΔV_{TH} is {C1/(C1+C2)}· ΔV_{TH} . If C1:C2 = 5:1 and ΔV_{TH} = \pm 0.3 V, ΔV_B would be changed by \pm 0.25 V. It is well consistent that the simulation results of the curve (a) and (c) exhibit \pm 0.24 V from 7.96 V of the curves (b). This shows that the proposed pixel reduces and compensates the V_{TH} non-uniformity of poly-Si TFTs.

Fig. 2. Measurement results of the pixel current (I_{OLED}) according to the input data voltages in the conventional 2-TFT pixel and the proposed pixel with various scaling conditions (C1:C2 = 1:1, 2:1, 3:1).



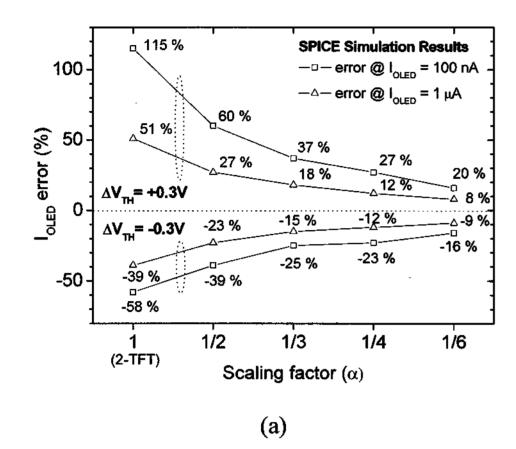

Fig. 3. Simulation results of the voltage node B of the storage capacitor when the same data voltage is addressed to the proposed pixel of C1:C2=5:1 which has a different threshold voltage (a) -2.41 V, (b) -2.11 V, and (c) -1.81 V.

Fig. 4 shows the I_{OLED} error comparison when the V_{TH} of T2 and T3 is varied by \pm 0.3 V (\pm 15 %) from -2.1 V. The I_{OLED} errors were investigated at two reference current levels of I_{OLED} = 100 nA and 1 μ A around. The SPICE simulation results (Fig. 4a) show that, in the conventional pixel of which we can say the scaling factor (α) is 1, the OLED current variation due to +0.3 V variation of V_{TH} is 115 % at the 100 nA level and 51 % at the 1 μ A level, respectively.

In the proposed pixels, the capacitance ratio of C1:C2 is varied from 1:1 to 5:1, thus the scaling factor from 1/2 to 1/6 is determined. The OLED current compensation is improved as the scaling effect is enhanced. When α is 1/6, the non-uniformity of I_{OLED} is considerably reduced to 20% from 115% at the 100 nA and no more than 8% from 51% at the 1 μ A, respectively, compared with the 2-TFT pixel. More over, since the V_{GS} (= $V_{DATA} - V_{DD}$) for I_{OLED} = 100 nA is relatively smaller than that for 1 μ A, V_{TH} variation portion in $(V_{DATA} - V_{DD} - V_{TH})$ is relatively large and the error would be increased in the small current level.

The measurement results also present a similar trend with the simulation results as shown in Fig. 4b. To investigate the I_{OLED} error due to \pm 0.3 V of V_{TH} variation in real device, we used the equivalent measurement condition that the V_{DATA} , rather than V_{TH} , is varied with \pm 0.3 V in the identical circuit sample, as is reasonable from the equation (2). When α is 1/4, the

non-uniformity of I_{OLED} is considerably reduced to 52 % from 172 % at the 100 nA and 16 % from 66 % at the 1 μ A, res-pectively, compared with the 2-TFT pixel. Based on the simulation and the measurement results, the error would be reduced to below 5 % when the scaling factor is optimized.

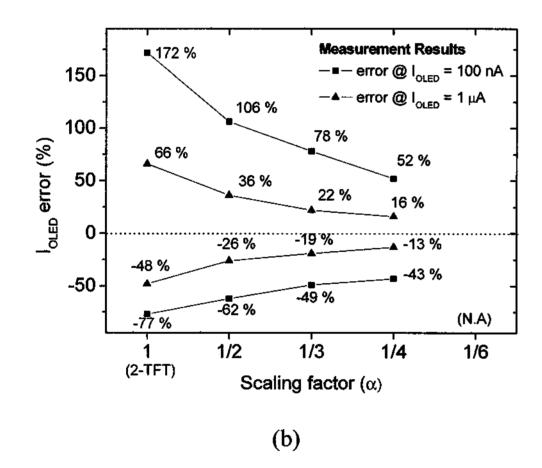


Fig. 4. (a) Simulation and (b) measurement results of the I_{OLED} error comparison in the conventional 2-TFT pixel and the proposed pixel with various scaling factor (α) when the V_{TH} of T2 and T3 is varied by \pm 0.3 V (\pm 15 %) from -2.1 V.

4. Conclusions

We have proposed a novel compensation scheme employing the voltage-scaled programming pixel which reduces the V_{TH} variation of poly-Si TFT rather than the V_{TH} memorizing and cancellation. By the proposed circuit effect, the V_{TH} could be scaled down and the non-uniform OLED current was successfully reduced and compensated for. The data input range was also increased by the scaling

factor and the current variation sensitivity to V_{TH} variation could be lowered. The scaling factor was easily controlled by the capacitance ratio of C1 to C2. The proposed scheme also contributes to the suppression of the V_{DD} drop problem by employing the reported supply line elimination design. The proposed driving theory is promising for achieving uniform image in the voltage programming method.

6. References

- [1] M. Stewart, R.S. Howell, L. Pires, and M.K. Hatalis, *IEEE Trans. on Electron Devices*, **48**, 845 (2001).
- [2] S. J. Bae, H.S. Lee, J.Y. Lee, J.Y. Park, and C.W. Han, in *International Display Research Conference (IDRC) Dig.* (2000), p. 358.
- [3] S.H. Jung, W.J. Nam, and M.K. Han, *IEEE EDL*, **25**, 690 (2004).
- [4] S. M. Choi, and O.K. Kwon, in *Society for Information Displays (SID) Tech. Dig.* (2004), p. 260.
- [5] J.H. Lee, W.J. Nam, S.H. Jung, and M.K. Han, *IEEE EDL*, **25**, 280 (2004).
- [6] Y. M. Ha, in Society for Information Displays (SID) Tech. Dig. (2000), p.1116.