Threshold Voltage Control of Pentacene Thin-Film Transistor with Dual-Gate Structure

  • Koo, Jae-Bon (Electronics and Telecommunications Research Institute) ;
  • Ku, Chan-Hoe (Electronics and Telecommunications Research Institute) ;
  • Lim, Sang-Chul (Electronics and Telecommunications Research Institute) ;
  • Lee, Jung-Hun (Electronics and Telecommunications Research Institute) ;
  • Kim, Seong-Hyun (Electronics and Telecommunications Research Institute) ;
  • Lim, Jung-Wook (Electronics and Telecommunications Research Institute) ;
  • Yun, Sun-Jin (Electronics and Telecommunications Research Institute) ;
  • Yang, Yong-Suk (Electronics and Telecommunications Research Institute) ;
  • Suh, Kyung-Soo (Electronics and Telecommunications Research Institute)
  • Published : 2006.09.24

Abstract

This paper presents a comprehensive study on threshold voltage $(V_{th})$ control of organic thin-film transistors (OTFTs) with dual-gate structure. The fabrication of dual-gate pentacene OTFTs using plasma-enhanced atomic layer deposited (PEALD) 150 nm thick $Al_{2}O_{3}$ as a bottom gate dielectric and 300 nm thick parylene or PEALD 200 nm thick $Al_{2}O_{3}$ as both a top gate dielectric and a passivation layer was investigated. The $V_{th}$ of OTFT with 300 nm thick parylene as a top gate dielectric was changed from 4.7 V to 1.3 V and that with PEALD 200 nm thick $Al_{2}O_{3}$ as a top gate dielectric was changed from 1.95 V to -9.8 V when the voltage bias of top gate electrode was changed from -10 V to 10 V. The change of $V_{th}$ of OTFT with dual-gate structure was successfully investigated by an analysis of electrostatic potential.

Keywords

References

  1. C.D. Dimitrakopoulos and P.R.L. Malenfant, Adv. Mater. 14. 99 (2002) https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  2. G. Horowitz, Adv. Mater. 10, 365 (1998) https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
  3. S. Iba, T. Sekitani, Y. Kato, T. Someya, H. Kawaguchi, M. Takamiya, T. Sakurai, and S. Takagi, Appl. Phys. Lett. 87. 23509 (2005) https://doi.org/10.1063/1.1995958
  4. M. Morana, G. Brest, and C. Brabec, Appl. Phys. Lett. 87. 153511 (2005) https://doi.org/10.1063/1.2103403
  5. G.H. Gelink, Evan Veenendaal, and R. Coehoom. Appl. Phys, Lett. 87, 73508 (2005) https://doi.org/10.1063/1.2031933
  6. J.W. Lim and S.J. Yun. Electrochem Solid-Stale Lett. 7. F45 (2004) https://doi.org/10.1149/1.1756541
  7. I. Vagi, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 86. 103502 (2005) https://doi.org/10.1063/1.1875749
  8. T. Sekitani. S. Iba. Y. Kato. Y. Noguchi. T. Someya. and T. Sakurai, Appl. Phys. Lett. 87, 73505 (2005) https://doi.org/10.1063/1.2031932
  9. J.H. Lee, S.H. Kim. J.B. Koo, J.W. Lim. S.C. Lim. G.H. Kim, S.J. Yun. K.S. Suh. C.H. Ku and J. Jang, J. Kor. Phys. Soc. 49, 1148 (2006)
  10. S. Dimitrijev, Understanding Semiconductor Devices (Oxford University Press, Oxford. 2000). p. 221
  11. T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase, IEEE Trans. Electron Devices 50, 830 (2003) https://doi.org/10.1109/TED.2003.811371
  12. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Meater. 3, 317 (2004) https://doi.org/10.1038/nmat1105
  13. K.P. Pemstich, S. Haas, D. Obrhoff, C. Goldmann, D.J. Gundlach, B. Batlogg, A.N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004) https://doi.org/10.1063/1.1810205