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Sequential Design of Inspection Times in Optimally
Spaced Inspection
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Abstract

The spacing of inspection times in intermittent inspection is of great interest, and
several ways for the determination of inspection times have been proposed. In most
inspection schemes including equally spaced inspection and optimally spaced
inspection, the best inspection times in each inspection scheme depend on the
unknown parameter, and we need an initial guess of the unknown parameter for
practical use. Thus it is evident that the efficiency of the resulting inspection scheme
highly depends on the choice of the initial value. However, since we can obtain some
information about the unknown parameter at each inspection, we may use the
accumulated information and adjust the next inspection time. In this paper, we study
this sequential determination of the inspection times in optimally spaced inspection.

Keywords : Censored data; Fisher information; Grouped data; Life testing; Order .
statistics.

1. Introduction

Many lifetime experiments employ the intermittent inspection scheme rather than
the continuous one for its convenience and saving costs. The efficiency of the
intermittent inspection scheme highly depends on the chosen inspection times, and
several intermittent ' inspection schemes have been discussed by many authors.
Kulldorff (1961) and Ehrenfeld (1962) proposed the concept of the optimal
inspection, and Nelson (1977) studied the optimum demonstration tests with
grouped data when the lifetime distribution is the exponential one. Other kinds of
inspection schemes including equally spaced inspection and equal probability
inspection have been also discussed by many authors. However, since the best
inspectior_l times in each inspection scheme depend on the unknown parameter, we
need an initial guess of the unknown parameter for practical use. If the initial
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guess is close to the true parameter value, then we have the nearly optimal
inspection scheme.

In this paper, we propose to determine the next inspection time just after each
inspection instead of determining. all inspection times before the first inspection,
and call this inspection scheme sequential inspection scheme. Then we can
estimate the unknown parameter and determine the next inspection time just after
each inspection. We first study how the initial guess affects the efficiency of the
optimally-spaced inspection. Then we investigate whether the sequential inspection
increases the efficiency for an exponential distribution. ‘

2. Inspection schemes

Suppose that we need to determine K inspection times t,t,, -, tz to estimate the

scale parameter in an exponential distribution, f(t;0)= exp(—t/8)/6, t = 0. There
are several inspection schemes including equally spaced, equal probability, equally
spaced in logtime and optimal spacing inspection.

2.1 Equally-spaced inspection scheme

In equally-spaced inspection scheme, the A inspection times are equally spaced as
t;=4-d, i=1,--, K where d needs to be determined. The best value of d can be
determined by minimizing the asymptotic variance of the maximum likelihood
estimator (MLE) based on the equally spaced inspection times in Nelson (1977),
0%sinh®[d/(26)]
nll—exp(~ Kd/§)](d/26)’
where n is the total number of items.
However, the resulting best value depends on the unknown parameter, and we
need an initial guess of the unknown parameter for practical use. The effect of a

wrong guess has been discussed in Kulldorff (1961).
2.2 Equal-probability inspection scheme

In equal-probability inspection scheme, the inspection times are chosen such that
the mean number of failures is the same within each interval between the K
inspection such that ¢,= —@log(l—i/K), i=1,2,..,K—1 for the exponential
distribution. We see that the equal-probability inspection times are easy to compute
but also depend on the unknown parameter. Shapiro and Gualti (1996) discussed that
just two inspections result in a moderate loss of information. Meeker (1986)
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discussed that when ¢; and t, are determined, the equal-probability inspection
scheme and the equal-spaced inspection scheme in logtime with the same t; and
tx have almost identical properties. Moreover, Kim and Yum (2000) concluded that
though the equal-probability inspection is neither more efficient nor simpler to
compute than the équal-spaced inspection scheme. Thus the equally-spaced
inspection scheme in logtime is regarded as an alternative for the equal-probability
inspection scheme since they share similar properties.

2.3 Optimal spacing inspection scheme

Kulldorff (1961) proposed the optimal inspection scheme, and Ehrenfeld (1962) and
Nelson (1977) discussed that the optimal inspection times are determined by
minimizing the asymptotic variance of the maximum likelihood estimator, which is
equivalent to maximizing the asymptotic Fisher information. The asymptotic Fisher
information in ¢;,¢,,-+-,t; about 6 can be written in general as

8F(t;0) 8F(t,_;:0)\*
n’”l 0 a9
i=1 F(ti;e)_F(ti—l;e)

where t; =—oc0, tg, , =00,
For the exponential distribution, the Fisher information can be cbtained as’
. (0) _ lK“ (t;—exp(—t,_,/0)—t,exp(— t:/0))*
thy by 9> = exp(—t;,_,/8)—exp(—1,/0)
Approximate solﬁtioﬁs t1sts -,y to maximizing (1) has been studied by Ehrénfeld
(1962), Saleh et al (1966). Park and Kim (2006) recently suggested a simple way to
find the optimal t,,t,,-,t5. They defined g, to be the maximizing solution to E, ,

1,

1)

g,(logg;)?
] - W—‘f‘ QiEi—l, Z"—‘ 1, 2, ey OO, Where EO - 0,

then the percentile p: .x '8, which are optimal spacings of size K, can be obtained as
pg=1— Qi N gx and the corresponding  inspection times are

ti=F 'p,. 150) = —0log(1—p;, ).
3. Sequential optimal spacing inspection scheme

3.1 Sequential inspection scheme

In intermittent inspection schemes, the whole inspection times are predetermined
with an initial guess of the unknown parameter. Thus we are exposed to a risk
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resulting from a wrong guess. With or without prior knowledge of the parameter, we
can get some additional information about the parameter at each inspection after the
experiment starts. Thus we like to use the information to adjust the predetermined
inspection times, and consider the sequential inspection scheme as follows:

With the initial value of the parameter 50 , only the first inspection time is

determined under the optimal spacing inspection scheme. Then we have (i, z,)

after the first inspection, which give a new estimator 51 where z; is the number of

failures in (t,_,,t;]. The second inspection time is determined under the optimal

spacing inspection scheme with 51 . Since the distribution of the failures after the
first inspection is still exponential with no memory property of the exponential
distribution, determining the second inspection time in A inspections in sequential
optimal spacing inspection scheme is equivalent to determining the first inspection

time in K —1 inspections with 51 . Thus the ith optimal inspection time can be

determined to be t,=t,., —flog Qx—;+1- After ith inspection, the experimenter can

update the parameter with (t;, z,, - »t; ;) -

3.2 Simulation results

Components in the experiment we consider are the total inspection times K, true
parameter § and the initial parameter 50 .as follows:
K=5,7,9,11, 0=2,3,4,5, 0,=2,3,4,5.
While the whole inspection times in the predetermined optimal spacing inspection
scheme are determined with the initial guess 5(,, the inspection times in the

sequential optimal inspection scheme are sequentially determined with the updated
parameter estimator. The parameter estimator is chosen here to be the maximum
likelihood estimator, which is the solution to the following likelihood equation,
k wi(t'—t,-,]) k
3 z (3 _ t + ) .
> 1—exp(—(t,—¢,_1)/0) Yot + Tty

i=1 i=1

The maximum likelihood estimator does not have a closed form solution, but the

new updated parameter estimator after the first inspection can be obtained in a

closed form as 6,= —tl/log(l—xl/fizi). We note that the conditional maximum

likelihood estimator after each inspection can be obtained in a closed form as

9,= —(t,——ti_l)/log(l—xi/kixj) in a similar way, but the relation with these
j=i

conditional maximum likelihood estimator and the maximum likelihood estimator has



Sequential Design of Inspection Times 15

not been yet studied.

The bias and variance of each maximum likelihood estimator have been calculated
with 10,000 Monte Carlo simulated samples for the predetermined and sequential
optimal inspection schemes. Table 1 shows the biases of the maximum likelihood
estimators based on two inspection schemes. We see that the bias for the
predetermined inspection scheme become large when the initial guess is too small
from the true value. We can also see from the table that the sequential optimal
inspection scheme produces less bias. Table 2 shows the asymptotic variances of the
maximum likelihood estimators. We can see that the asymptotic variances of the
sequential optimal inspection scheme are a littler smaller than those of the
predetermined optimal inspection scheme for all combinations. Thus we can conclude
that the sequential inspection scheme reduces much of the bias rather than the

variance.

<Table 1> Average biases based on 10,000 simulations
50 Sequential Optimal Inspection | Predetermined Optimal Inspection
0 2.0 3.0 4.0 5.0 2.0 3.0 4.0 50
2.0 |10.0007 0.0068 0.0029 0.0172| 0.0327 0.0648 0.1021 0.1069

P 3.0 10.0045 0.0108 0.0020 0.0000 | 0.2541 0.0552 00754 0.1165
40 |0.0035 0.0023 0.0069 0.0032 | 1.0203 0.2029 0.0541 0.0833
50 00202 0.0429 0.0137 00011 | 25671 06152 0.1605 0.0934 -
20 100011 00132 0.0047 00054 | 0.0344 0.0532 0.0649 0.0944

e 30 00038 00169 00114 0.0076| 02874 0.0454 0.0636 0.0694
4.0- 10.0017 0.0051 0.0147 0.0044 | 1.1523 0.2520 0.0585- 0.0626
50 |0.0043 0.0046 0.0013 0.0024 | 2.8765 0.7252 0.2079 0.0855
2.0 10.0061 0.0027 0.0049 0.00841 0.0558 0.0276 0.0548 0.0780

Keo 3.0 10.0221 0.0046 0.0020 0.0171| 0.4110 0.0764 0.0447 0.0367
4.0 10.0112 0.0165 0.0216 0.0076 | 2.4702 0.3005 0.0729 0.0674
50 |0.0148 0.0009 0.0001 001181 35105 0.9820 0.3017 0.1441

4. Concluding Remarks

We consider the sequential optimal inspection scheme where the'inspection times
are sequentially determined, and see that the sequential optimal inspection scheme
reduces much of the bias of the maximum likelihood estimator. In exponential life
testing, it is easy to determine the next inspection time the sequentially due to no
memory property.
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<Table 2> Average variances based on 10,000 simulations.

6, |Sequential Optimal Inspection|Predetermined Optimal Inspection
] 2.0 3.0 40 5.0 2.0 3.0 4.0 5.0

2.0 10.0307 0.0348 0.0382 0.0416 | 0.0309 0.0351 0.0394 0.0432
3.0 10.0624 0.0690 0.0753 0.0808 | 0.0633 0.0694 0.0761 0.0822
4.0 101040 0.1140 0.1225 0.1312| 0.1087 0.1150 0.1235 0.1322
50 101562 0.1689 0.1806 0.1918 | 0.1686 0.1733 0.1816 0.1934
2.0 (0.0279 0.0313 0.0343 0.0369 | 0.0281 0.0315 0.0349 0.0379
3.0 {0.0575 0.0629 0.0678 0.0725| 0.0585 0.0632 0.0682 0.0735
40 (0.0971 0.1046 0.1122 01186 | 0.1013 0.1059 0.1124 0.1191
50 |0.1472 01568 0.1664 01747 | 0.1581 0.1607 0.1676 0.1754
2.0 100264 0.0292 0.0317 0.0341 | 0.0265 0.0293 0.0321 0.0348
3.0 10.0549 0.0591 0.0633 0.0675| 0.0559 0.0596 0.0637 0.0680
40 10.0934 0.0993 0.1053 0.1111 | 0.0976 .0.1011 01062 0.1115
50 01425 0.1497 01573 0.1643 | 0.1531 0.1540 0.1592 0.1653

In estimating the mean of the exponential distribution based on grouped data, the
maximum likelihood estimator does not have a closed form solution. Thus the
approximation to the maximum likelihood estimator has been studied by Tallis
(1967), Kendall and Anderson (1971), and Nelson (1982). In the sequential optimal

inspection. We note that the conditional maximum likelihood estimator after each
k+1 ’

inspection has a closed form solution as 6, = — (t;—t,_,)/log(1—z;/ Y z;). If we
=i

can find a suitable weight function on these conditional maximum likelihood
estimators, we can have an approximate linear maximum likelihood estimator and
sequentially update the parameter estimator with additional inspection. This plausible
future work will complete the practical aspects of the sequential inspection scheme.
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