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A Bayesian Multiple Testing of Detecting Differentially
Expressed Genes in Two-sample Comparison Problem

Hyun Sook OhD) and Wan Youn Yang?

Abstract

The Bayesian approach to multiple testing procedure for one sample testing problem proposed
by Scott and Berger (2003) is extended to two-sample comparison problem in microarray
experiments. The prior distribution of each gene’s mean for one sample is given conditionally
on the corresponding gene’s mean for the other sample. Posterior distributions of interesting
parameters are derived and estimated based on an importance sampling method. A simulated
example is given for illustration.
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1. Introduction

Microarray technologies enable us to simultaneously measure the expression levels of
thousands of genes in a biological sample. They are being applied increasingly in biological
and medical research for a various kind of problems.

Many statistical approaches have been proposed to analyse the data from microarray
experiments (Kerr and Churchill (2000), Tusher et al. (2001), Efron et al. (2001), Yang et al.
(2001), Dudoit et al. (2002)). An important and common task in such analyses is to detect
genes with differential expression under two experimental conditions such as treatment/control
status, two types of tissues, two drug types, etc.

Since a typical microarray experiment measures expression levels for thousands of genes
simultaneously, we are faced with an extreme multiple testing problem. There has been many
researches on such multiple testing procedures.

In the beginning Westfall and Young (1993) proposed resampling-based p— value adjustment
procedure from the typical two-sample t-test statistics to control the family-wise error rate.
However, most of multiple testing procedures including Westfall and Young (1993) based on
the two-sample t-test are highly relevant to microarray experiments. Also, it is too
conservative to control the family-wise error rate in microarray experiments.

The false discovery rate(FDR) developed by Benjamini and Hochberg (1995) has emerged in
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the context of multiple testing as a practical object to be controlled, as opposed to the
family-wise error rate. The FDR was further developed by Storey (2002) with a new concept
called positive false discovery rate, which has a Bayesian motivation. Recently multiple testing
procedures to control the FDR has been issued mostly in microarray experiments.

On the other hand Scott and Berger (2003) provided a one-sample Bayesian multiple testing
procedure in general sense in which the multiple testing is controlled by prior specifications
without using the FDR. In this procedure there is a common prior probability that each
individual mean is zero and let the data themselves choose this common prior probability
under a random effects model or Bayesian hierarchical model for each mean.

The procedure developed by Scott and Berger (2003) is extended to two-sample comparison
problem in microarray experiments in the present paper. Each pair of comparing means are
different or equal according to their gene responses so the priors for each pair of comparing
means are specified conditionally. Multiple testing problem is controlled by the common prior
probability that each pair of individual means are equal and let the data themselves choose
this common prior probability. In Section 2, the two-comparison model is specified with
likelihood function and priors. The posteriors which is our main interests are derived in
Section 3. An illustrative simulations are described in Section 4. Finally, Section 5 summarizes
and discusses about our procedure.

2. Two-sample comparison model

2.1 The model

We consider a generic situation that for each gene i, i=1,---, N, we have expression levels
Xy, -, X,; from n microarrays under condition 1 and Yj;,--,Y,; from n arrays under
condition 2.

The goal is to identify genes that {X,;, -, X,;} and {Y;;,--, Y,;} have different means. It

is assumed X, and Y;;, j,j =1,--n, are independently N(X;i | s %) and

N(Yj ;| o » %), respectively for each i with unknown variance o’. It is desired to determine

which of the differences, p,;— pg;, are nonzero. Since X;= Ein /n and Y,= ), Y, /n are

j=1 ji=1
sufficient statistics of u,; and p,;, they will be used in our testing and for the notational

convenience X; and ¥; will replace them respectively. Also, the variance of X;(or Y;) is o*/n

but o? will be used instead.
The model is specified by defining a _rnodel index parameter v to be an N-dimensional
vector of 0’'s and 1’s such that

v = {0 i p; = pos
’ it py =
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Then the full likelihood function can be written as

1
f($7y|N17 M 02’ ’Y) = HzN=1 exp|— ?{(%_ Yik1i T (1- ’Yi)ﬂm)?"'(yi_ N2i)2} )

1
(270?)
where z={z,i=1,-,N}, y={y,i=1,--,N}, w={pi=1,-,N1}, o = { g i =1,
N} and y={v,i=1,-,N} .

2.2 Priors

Let us consider the conditional prior distribution of u;; given u,; to be as follows;

Fail i (1—p) Nyl thair V) gy =

That is, it has point mass at u,; and normally distributed centered at u,; elsewhere. The
conjugate prior distribution of u,; is considered as normal distribution, N(puyl0, V), where V
is the unknown hyper parameter.
Thus unknown parameters are © = (u,,us,7,p, V,0°) and it is easily verified that
wlylp) = p' M1 -p)"
Then the prior of @ is
m(0) =7 (uppalysp, V) 7 (ylp) 7 (p, V, 0%)
= vaz 1W(ﬂ1i|M2iv Yo s V) 7 (g | Yo s V) 7T(’Yi|P) =(p, V, a*)
= HfV: 1(N(N1i|ﬂ2ia V))% N(Mml()’ V)Pl_%(l _p)'v,-ﬂ(p, V, 02) .
For prior distribution of w(p, V; ¢?), let us follow the procedure in Scott and Berger (2003).

First, it is assumed that p and (V, o) are independent. For n(p), one does have strong prior

information about p that p is large(p =~ 1) in microarray experiments in general. Scott and
Berger (2003) suggested a convenient functional form that represent this type of information
such as w(p)= (a+ 1) p®, where « is an adjustable parameter allowing one to control how
much of w(p)’s mass is concentrated near 1.
Priors on V and o® are given as
m(V,0%) = n(Vle*) n(o?)
= —1;(1+ V/O'Z)_Q—l?
g g
1

(V+o%)? .
For the hyper parameter V a vague proper prior (1+ V/o?) 2?/6? is considered conditioned

on ¢ and 7(0”)=1/0” is a well-known Jeffrey’s noninformative prior.

3. Posteriors

Under the modeling assumptions described in section 2, the posterior density of
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O = (uy, por v, 0, V, 07) given (z,y) is
(0| z,y) o< flz,yl s o, v, 0°) 7(O) . 1)

Lemma 1. The posterior density in (1) is proper.

Proof. Let p=0?V/(6*+ V). Then it is easy to show that

1

E /ff(z,, .%‘Jﬂw Hai ‘727 ’Yz‘)N (ﬂn,ﬂm:v)% N(ﬂmloa V)d/‘udﬂm
7=0

= N(y;10,0° + V){pN

Vy, ) Vy,
T, ———, o’ +p|+ (1— )N(xil , ot 4+ V4ol (2)
c+V P P Ft+V P
Now, to prove our lemma it is sufficient to show that

flfmfwﬁ@) X 7(V,0%) 7(p)dVdo®dp 3)
60 0 i=1

is finite. Let w=1/(¢"+ V). Then by change of variables,

2
uy;

(3)= Kfolfooc}/:-?ﬁ \/Ee’Tgi(p,u,ch)w(p)dudanp

for some constant K, where

(p,u,0%) = — L ex (- (xf”(l_UUZ)yi)z)
9:\p, U, V1o’ p 202(2_u02)

1-p o (_ (fci—(l—uaz)yi)z)
Vu+ol(l—uc?) P u+o*(1—ud?)

Since 0 < u < 1/6% for all p,u,s’, ¢;(p, u, 6°) < ¢ for some constant ¢. Thus
1

1 <] a2 2
3) < KcN/ / f w2 el /27r(p)duda2dp
0vo Yo

1
1 oo —
:KCN/ W(p)dpf /uuN/Qe_“lyW2d02du< o0,
0 0 (]

+

N
where [yI> = Y y7. O

i=1

Now, the main goal of the problem is to derive the posterior probability of «,(or 1—+,) for
each gene i. Let
P,= P(y,=0lz,y).
Then

p= /P(7i: lei, v, p Vs o )nlp, V, 02'5171',, yi)dpdVdo'Q .

For given p, V, ¢°,

_ _ f(xi,yi|7i: 0)71’(’)’11: 0)
Pla=Olz, u) = [l ylv=0)m(y,= 0) + my =, y;lv,= )mwly,= 1)’ “)
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where

m1($i,yi")’i =1)= / f(l'iv ?Jilﬂw /1«21)77(Nm #2i) .
Py ™ Mo

Since X; and Y; are independent and each is normally distributed with mean u,; and
variance o° for given v,= 0 and the prior distribution of p,; is N(uy;|0, V), in the formula (4),

i

Vy
T; Y;l i=0)= N( :10, ac+V N(z,l , ot + ),
fzy, yily Y; ) =7 P

where p is defined as in the proof of the above lemma.
When ;= 1, X; and Y; are independent and normally distributed with mean g,; and pu,;
respectively. Combining the prior distribution of u,; and p,; defined in section 2.2,

Vy;
ml(-'lii; yil')’i = 1)= N(y7l 0'2+ V) N(.’L’i]-—‘02+ V, 0'2+ V+p) (5)

Thus
P(')’l = 0‘9373}7]); V, 02)

— 2 Vy, \?
1+1p/a-i;V+p exp{l(xi_2y,,)(21 o1 )
p o' +p 2 c’+Vi\e“"+p o°+V+p

The joint posterior distribution of u,; and u,; given p, V, o> when ;=1 can be derived as

-1

(6)

follows; For given p, V, o°,
F @iyl s oy = )7 (g, pioily; = 1)
m ($ia il vi= 1)
Vy+pz; a2V
I ™ , @
Hua ol+ Vv P He A+ V+p o+ V+p
Since (6) and (7) are the posterior distributions of p;; = pe; and (i; iy;) conditioned on

77(#17" N2i|7i =1, z, y) =

o’ to; + Vi,

=N

p, V,o°, we need to integrate out these conditioned parameters by multiplying of
7(p, V,o’lz,y) to each (6) and (7). Let us derive n(p, V,o%lz,y).
w(p, V0|7, y) = fﬂ(upuz,%p, V,o% |z, y) dp, dpydy
OC/HLN=I[N(zi|7iuli+(1—7i)l‘2i’ UQ)N(inﬂszz)(N(.Uulﬂy’ V))%
X Nyl 0, V)p' ™ "(1 = p) "1 (p, V0 )dpydpadry

Hence

Vy,
Yi ,a2+p)

xlp, Vio’lz,y)= C I, | pN(y;10,6° + V)N(xiQ——-
oo+ V

Vyi
+ (1—p) Nly,;l0,6° + V)N(zil—Z%I;, o+ V+p)]7r(p, V,o%),
o

where €' ™' is the normalizing constant.
Thus the posterior distribution of py; = p,,; is
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P('yi=0|x,y)=/hi(p,V,02)7r(p7V,02|w,y)dpdVda2=E”(”’V’”2'I’y)[hi(p,V,Uz)], (8)

where h;(p, V;0*) is the formula (6) which is the posterior probability of v, =0 given p, V,o2.
Similarly,

T (o tas v = 1,2, y) = /fi(p, V,0%)m(p, V,0? | z,y)dpd Vio® = E*® V(£ .(p, V,0*)], (9)
where f,(p, V,0°) is the formula (7) which is the posterior distribution of (uy;p;) given
p, Vio® when py; = piy;

Since we have computational difficulties for deriving (8) and (9), the "Importance Sampling
Method” can be used. In this case the multivariate ¢-distribution is generally used as the
common important function and sampling is based on this given t-distribution for i=1,---, V.

For removing the restrictions on p, V,o2, let A=log(p/1—p), £ =logV and 7 =logo®. Then

™\ & nlzy)=n((1+e )7 ef, ellz,y)efT T M 1+e )

Random samples {(\,, &, m.)|1 < k< m} are drawn from the t-distribution and let w, be

the ratio of the given t-distribution density function to the 7* at (A, &, m), k=1,---,m. Then

P, = P(y;=0lz,y) is evaluated as the weighted mean of h;((1 +e M) e% e™with respect

to 'U)k;

n

Pi: Zhi((l_{_e_)\k)_la eékv e’h.~) wk/Ewl . (10)
k=1

=1
In the similar way 7 (u;, poilv: =1,2,y) can be estimated by using f; instead of h; in the
right side of (10).
Specifically, from the formula (7), each marginal posterior distributions of gy, py; can be
derived and the posterior density functions of p;;—u,; given ;=1 for given p, V,o® are

derived as follows.
1 1
7y — poilvi— 150y Vaot,z,y) = exp|l— = ——F—————(t— B/A)*
(k1 = taailyi= P y) T O pl=5 v1v2(v3+v4)( /A4)%)
= ¢,(p, V,o®), say,
where v, = p, v, =g’ V/(02+ V+p) Vg = V/{02(02+ )}, B= T;— (Vyi+px,¢)/(o2+ V+p) and
A=("+V)/V.

Therefore, w(uli—,uﬁl'yi———1,m,y):E”(”’ V‘”Q'z‘y)[qi(p, V,0¥], which can be estimated by the

importance sampling method as above.

4. Simulations

For y, ¢=1,---,110, 110 samples are generated based on N (po;y1) where uy's are random
samples from N(0,9). Then the each value of z; is generated from N(u,;,1) for i=1,---,100

and the other 10 values of z, are from ~N(u,,,1) where g,; is a random sample from
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N(py,9) for i=101,---,110. Thus we have p,;=py for i=1,---,100 and Ly # po; for
i=101,---,110 in which 7% of {u,;— u,;} are non zero.

With this simulated example, the posterior probabilities of u;; =y for i=1,---110 are
estimated by the importance sampling method described in the previous section. For the
multivariate t-distribution of (p, V, ¢°) as the common importance distribution, the parameters
of the t-distribution are selected as follows; 5 degree of freedom is chosen which ensures a
heavy tailed distribution. The mean vector can be chosen subjectively. In general, the best
guess of the parameters are used. For example, if p=0.9 would be the best guess then let
the median of 7(p) be 0.9 so that w(p)=5.58p"%. The covariance matrix is chosen as big
such as 57 so that the t-distribution is flat.

<Figure 1> shows the posterior probabilities of p;; =, given =z;—y; and py;— o,

respectively when m(p) = 11p'° is used as the prior distribution of p of which the median is
about 0.94. The figure shows that 8 signal data values have lower posterior probabilities of
Hi; = po;. However, 2 signal values in which the observed values are indistinguishable with
the noise(unsignal) data have posterior probabilities of H1; = Wo; bigger than 0.5 even though

their true mean differences are not zero.
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<Figure 1> Posterior probabilities of u,; = u,; with respect to x; —v;, py; — o,
when 7 (p)oc 11p"

<Figure 2> is the plot of the posterior probabilities of py; = u,, given z;,—y, and L ™ Mo

respectively when w(p)=6p° is used as the prior distribution of p of which the median is
about 0.89. All 10 signal values have posterior probabilities of u,; = u,; less than 0.4 but there

are also more false positive values. If we use the uniform prior for p (zx(p)=1,0<p< 1), the
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posterior probabilities are smaller than the above cases. Thus the posterior probabilities of
ii1; — Mo; depend on the prior of p.

5. Summary and Discussion

In this article, the Bayesian approach to multiple testing procedure proposed by Scott and
Berger (2003) has been applied to two-sample comparison problem in microarray experiments.

The prior distribution of each gene’s mean for one sample has been given conditionally on
the corresponding gene’s mean for the other sample. It has been assumed that few genes are
changed by the different condition.
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<Figure 2> Posterior probabilities of g, = p,; with respect to z; —y;, p1; — to;
when 7 (p)oc 6p°

The multiple testing problem has been controlled by the common prior probability that each
pair of individual means are equal and let the data themselves choose this common prior
probability. Prior distributions for the other parameters have been given objectively(vague
prior) as possible.

Posterior distributions of the parameters of interest have been derived such as the posterior
probability that two means are equal. To get around the complexity of the posterior
distributions, the importance sampling method has been proposed.

The proposed method has developed based on the one-sample Bayesian multiple testing
procedure by Scott and Berger (2003). In two-sample comparison problem, it is possible to
transform to one-sample testing problem by the pairwise comparison. However, the pairwise
comparison is appropriate only when each sample data is obtained from the same experimental
condition. If two sample have been applied to separate arrays, the pairwise comparison by
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their differences is not appropriate.

Furthermore, in general, one sample data is for the control and the other is for the
treatment so it is of interest to detect which genes are changed by the treatment sample.
This motivated to use the conditional prior for the mean of each gene for the treatment
sample. Also, the marginal posterior distributions of the parameters such as the posterior
distribution of the mean of each gene in each sample can be derived and estimated in the
proposed method.
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