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Abstract

When using the well-known variance estimator of Sen (1953) and Yates and
Grundy (1953) in inclusion probability proportional to size sampling, we often
encounter the problems due to the calculation of the joint probabilities. Sarndal
(1996) and Knottnerus (2003) proposed alternative strategies for variance estimation
to avoid those problems in the traditional method. We discuss some of practical
issues that arise when they are used. Also, we describe the traditional strategy
using a sampling procedure available in a statistical software. It would be one of
the attractive choices for design-based variance estimation.

Keywords . Sen-Yates-Grundy variance estimator; Joint probabilities; Poisson
sampling; systematic PPS sampling; Sampford's sampling method.

1. Introduction

‘In statistical agencies, there is considerable interest in the estimation of
precision of survey estimates. But design-based variance estimation for most
inclusion probability proportional to size (#PS) sampling schemes is often
computationally difficult because it requires determining the joint probabilities.
These quantities play the key role in the variance estimation using the Horvitz
and Thompson (H-T) (1952) estimator or the generalized regression (GREG)
estimator of a population total, and hence the problem of estimating variance is
virtually identical with the problem of calculating the joint probabilities.

Sarndal (1996) proposed a variance estimation strategy using Poisson sampling
to replace the traditional fixed sample size 7 PS scenario using the H-T estimator.
His approach uses the GREG estimator and entails the calculation of a weighted
squared residual sum instead of the joint probabilities. He recommended this
method for the Generalized Estimation System (GES) developed in Statistics
Canada in 1994.
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Knottnerus (2003) in Statistics Netherlands also proposed a methodology hbased
on a general framework in which the intraclass correlation coefficient instead of
the joint probabilities plays a crucial role. He pays attention to systematic PPS
sampling among the 7PS sampling schemes and uses the H-T estimator, not the
GREG estimator.

In this paper, we first review the three strategies for variance estimation
mentioned above: (a) the traditional approach using fixed-size wPS sampling; (b)
the approach using random-size mPS sampling; (c) the approximate approach using
fixed-size wPS sampling. Second, for the two alternative approaches (b) and (c),
we discuss some of practical issues that arise when they are used. It seems that
they do not realize the essential advantages of #PS sampling or operational
simplicity. Third, we give special emphasis to the traditional strategy using a
sampling procedure called Sampford’'s method, which is available in a statistical
software. Finally, we give an illustrative example to show the efficiency of the
method.

2. Traditional Approach using Fixed-Size nPS Sampling

Considering a finite population U= {U,,---,Uy} of N identifiable units, let .S be
a probability sample of the size n drawn from U according to a given sampling
design p(-) with the inclusion probabilities m;= p(U;€5) and the joint
probabilities m,; =p(U; €S A U; €5) .

Let Y; denote the value of the character of interest, y , for the j th unit.
Assuming ;> 0 for all j , the unbiased H-T estimator g w7 of the population

N
total Y= Y, ¥; is defined by

i=1

Yyr= ¥ajyj : 2.1)

where a; = 1/m;

The variance of the H-T estimator, say V( f’HT) , 1s given by
YHT ZE (a0;/a;—1) YV} Y, , (2.2)

where a;; =1/m;; and ajjzaj=1/7rj )

ij
The well-known unbiased estimator of V(Y ) proposed by Sen (1953) and
Yates and Grundy (1953) is

V(Yyp)=—01/2) EZ - a;/a0;)(0,Y,—a; Y, ). (2.3)

Let m; be a known positive size measure, believed to be strongly correlated



Variance Estimation under mPS Sampling Schemes 63

with ¥; . If the inclusion probabilities 7; are proportional to the m; , then the
method is called a #PS sampling scheme.
The classical 7#PS scenario for variance estimation is as follows:
Construct the 7 PS sampling satisfying
a. fixed sample size design
b. exact design unbiasedness for the estimator of population total and its
variance
c. some desirable properties such as a;a;— a; < 0 for all = j
Then use the H-T estimator to estimate the population total and compute the
joint probabilities m,; which are generally all unequal. Finally use them to compute

the variance estimator V(¥y) .

Note that the variance (2.2) and variance estimator (2.3) of the H-T estimator

involve the joint probabilities m; . For most of 7PS sampling schemes, especially

with n> 2 , considerable difficulties can arise in the determination of these
quantities. Recently alternative methods for variance estimation that do not depend
on the m,; have been developed, as shown in the following sections.

3. Approach using Random-Size mPS Sampling

The desirable features a, b and ¢ quoted in the classical #PS scenario for
variance estimation conflict with the goal: correct computation of the joint
probabilities in a double-sum calculation with n(n—1)/2 terms using the
Sen-Yates-Grundy formula (2.3). Sarndal (1996) considered abandoning some
features, that is, a and b, and proposed the following alternative approach using
the generalized regression (GREG) estimator:

1. Compute the inclusion probabilities 7rj=nm]-/ Emj , j=1,--,N . Carry
U

out the Poisson sampling with these L

2. To estimate the population total Y , use the GREG estimator Y, CREC

below generated by z;=z,; . Here z; is the value for the unit j of

a auxiliary vector £ whose total, X= Ezj, is assumed to be
U

known from a reliable source and z,; is the observed value of z,

where X, = 2-’1’01 .
7

IA/GREG = i/HT"_ B (X, — Xomr) 3.1
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where Xyyr= Eaj z,; and B is the vector of regression coefficient
s

estimators.
3. Variance estimation is obtained via the weighted squared
residual form of

V= g a; ¢, 95¢; (3.2)

where ¢, = a;,—1 and g, and e; are the calibration factor and the

regression residual for the unit j , respectively (See Sarndal (1996), pages
1290-1291).
As shown in (3.2), the variance estimator does not depend on the joint

probabilities m;; and is always non-negative.

4. Approximate Approach using Fixed-Size nPS Sampling

Unlike the classical variance estimator, the one suggested by Knottnerus (2003)
is not based on the joint probabilities. His approach depends on the generalized
sampling autocorrelation coefficient p , that is, the correlation coefficient between
two randomly chosen observations from a random sample S that is selected from
a population according to an unequal probability sampling design. In the literature
this p is often used for indicating the loss of efficiency in comparison between
systematic sampling (or cluster sampling) and simple random sampling. Then p is
used as a measure of homogeneity and usually called the intracluster or the
intraclass correlation coefficient( See Cochran (1977), Kish (1995) and Séarndal et
al. (1992)). Knottnerus’ approach is summarized as follows.

After selecting the sample S using a given sampling design without
replacement, the elements of the sample are ordered according to a random
permutation, resulting in a randomly ordered sample s= {u;,--,u, } , where n is
fixed. When tracing both the random sample selection mechanism and the random
permutation of the sample elements, it can be shown that the so-called first- and
second-order drawing probabilities, p; and p; j, are given by '

J

=Plu=U;| U;€ HP(U;€8) =, (41)

1 1
pj112= P(’ll,jl = U}l A ui2= U}z )= m;ﬂ‘hjz (42)

Next define Z; = Y; / p; , j=1,--,N and the corresponding z values of the

randomly ordered elements in s by z;,2,,-,2, wWith z;=v;/p, . Then the
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expectation and the variance of z, can be derived as well as the covariance

between z; and z; :

N
w,=E(z,)= ijZj =Y (4.3)
j=1
N N y2
aszar(zj)Zij(Zj—,uz )2=Z—]— y? (4.4)
j=1 j=1Pj
N N Y)Y, \
Covlzy,z;) = E(z;— p, )z, — p,) = Zzpij——— ) G (4.5)
i=lj=1  PiPj
Now denoting an unbiased estimator of ¥ or u, in (4.3) by }A’z or [, , we
have
| o A 19 1Y
Y,=p,==),z,=—),— . (4.6)
=K ni; n 1D

Note that since w; = np; according to (4.1), it turns out that )A’z is identical to
Yyr from (2.1). Then for samples of size n
2
O’Z

Var(Y,)= [1+ (n=1)p,] — (4.7)

where p, is called the generalized sampling autocorrelation coefficient and

expressed as

C’ov(zi,zj) ) ]
pz=°-“—;—2‘———“ , 1< i=3<n . (4.8)

Note that since f’HT= f’z above, the variance of Y’ wr from (2.3) equals

2

~ o,
Var (Ygp )= [1+(n-—1)pz] - (4.9)
An unbiased estimator of Var(Y,) is denoted by
2
Y z Sz
Var(Y,)= [1+n P } — (4.10)
1=p, | n

T

where s?=Y,(z,— iz,:/n P/ (n—1) .

i=1 i=1
When p, is known, the variance estimator (4.10) is always non-negative and
does not require any joint probabilities. But when p, is unknown, it must be
estimated and the joint probabilities are absolutely needed. The idea of the
estimation procedure for p, is that the fixed value z; can be decomposed
numerically into two components: (i) a part &; that is linear in the powers of P,
and (ii) an uncorrelated remainder 2, . By using this decomposition, p, can be

estimated by
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~

A ol p,+ (s;—aW )pw

2
, 411
52 + (pv, )a ( )

where a Z p]Qj with the estimate of the &;, and /3¢ and p, are the
i=1

estimated sampling autocorrelation coefficients depending on the parts ¢, and {2, ,

respectively.
Note that when a sample is drawn according to Brewer's (1963) method for

n=2 only, [)Q is given by

z—1j¢z’y( 2pl)(1 2pj)a¢ ’ .

where v is defined by y= {1+ ij 2pj /2 consisting of the joint
=1

probabilities in Brewer's method, denoted by

2p;p; (1—p;—p;)
- . 413
M58 = (1—2p, )(1—2p;) (4.13)

He showed how the w5 can be employed for finding f)w approximately for

systematic PPS sampling for n> 2 .

5. Some Issues for Alternative Approaches

Because of the complexity of the variance estimation due to the joint
probabilities, especially in cases of n>2 , Sarndal (1996) and Knottnerus (2003)
developed the alternative approaches mentioned above.

Now we discuss some issues when they are used in practice. First, Sarndal’'s
approach does not depend on the joint probabilities at all and hence the variance
estimator is simpler to handle mathematically. Poisson sampling, which is one of
the 7PS sampling schemes, is essential to implement the approach. The sampling
method that is a generalization of Bernoulli sampling is easy to execute and has
the property of a;= a;a; for any ¢+ j, which results in the simple variance
estimator (3.2) expressed by the weighted squared residual form.

But the saniple size in Poisson sampling is random. Since random sample size
may substantially increase the variance, survey samplers often prefer fixed sample
size designs. Also, many surveys in governmental statistical agencies and major
survey institutes currently adopt deep stratification that there are many strata
and extremely small samples from each stratum are selected. The counties for the
Current Population Surveys of the U.S. Census Bureau and for the Survey
Research Center in the University of Michigan may be the typical examples of



Variance Estimation under 7wPS Sampling Schemes 67

national samples that are selected under the deep stratification. When using these
samples, there is some concern that although the GREG estimator uses the
available auxiliary information, it may be appreciably biased. Additionally, as noted
by Hidiroglou, Estevao and Arcaro (2000), the GES in Statistics Canada still
computes variance estimates for stratified designs under simple random sampling
and probability proportional size (PPS) with replacement sampling. Considering this
fact, it would be desirable that some efficient PSS sampling schemes having fixed
sample size are examined for variance estimation. ,

Second, Knottnerus’ approach uses the generalized sampling autocorrelation
coefficient. If the coefficient is known, the variance estimation process is quite
simple because the variance estimator (4.10), which does not depend on the joint
probabilities, is available. But if it is not known, then the process become
complicated. First of all, the numerical decomposition of the fixed value z; using a

kind of regression model is not simple. Also, his approach uses systematic PPS
sampling that is one of wPS sampling schemes. This sampling method is easy to
implement, while the exact evaluation of the joint probabilities for that method is
cumbersome as the sample size increases. Thus the following approximation using
the joint probabilities in Brewer's (1963) sampling method is unavoidable.

() = 5l m )

(6.1)

M = m
J ¥ (n~27ri)(n—27rj)

where 'y* = {1+ ﬁﬂj/(n—%rj)}/Z .

ji=1
Note that this expression is quite different from one to O(N~*) derived by
Hartley and Rao under the same sampling scheme (See page 369, Hartley and Rao
(1962)).
In summary, the alternative approaches use certain wPS sampling schemes that
survey samplers would not prefer in several aspects.

6. Traditional Approach using Efficient Sampling

Bayless and Rao (1970) empirically investigated the efficiencies of many unequal
probability sampling methods for n=3,4 . They showed that a strictly #PS
sampling scheme, called Sampford’s (1967) method, which is theoretically
interesting, is one of the methods that perform well with respect to the variance
as well as variance estimator. This method to cover n> 2 is well-known as an
extension of the procedures suggested by Brewer (1963) mentioned before and Rao
(1965) for n= 2 only.

But the difficulties in calculating the joint probabilities are not exceptional even
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for this method. Sampford’s method is a rejective procedure, which selects a
sample with replacement and only accept the sample that contain n different units.
The computations may become tedious for the large samples. Although they can
be programmed for computer evaluation, the uncritical use in computer programs
may result in substantial round-off errors. The difficulty in their calculation stems
from the large number of decimals which must be stored if they are to be
calculated with any acceptable degree of accuracy. Because of these problems,

Asok and Sukhatme (1976) derived an approximation of m,; correct to O(N™*)
under Sampford method.

In recent version of the SAS/STAT (2004) and the SPSS (2004), some equal or
unequal sampling methods including Sampford’s method are available for sample
selection and optionally, joint probabilities of selection are also available for certain

7 PS sampling methods. The SURVEYSELECT procedure for analysis of sample
survey data in the SAS system provides the exact joint probabilities for
Sampford's method for large-size sample, although it has not been noted by

survey samplers until recently.

7. Numerical Illustration

As mentioned before, Knottnerus’ approach based on systematic PPS sampling
uses the approximate expression for m; given by (5.1), which is different from

one derived by Hartley and Rao (1962) under the same sampling method. For
Sampford’s method, the approximation of m,; derived by Asok and Sukhatme

(1976) may be one of the choices in calculating the joint probabilities. Also, we
can calculate the exact joint probabilities for Sampford’s method by using the
SAS. Thus, the following comparisons may be possible: (i) the direct comparison
of the values of 7,; 's; (ii) the comparison of variances, obtained by (2.2).

<Table 7.1> is the data of 35 Scottish farms, which is given in Sampford
(1962). We consider selecting the samples of n=3 under Sampford’s method and
systematic PPS sampling. In this case there exist 6545 possible samples.

<Table 7.2> presents a comparison of U s and variances between four
approaches: (a) the exact method under Sampford’s method; (b) the approach by
Asok and Sukhatme under Sampford’'s method; (c¢) Knottnerus’ appproach under
systematic PPS sampling; (d) Hartley and Rao’s approach under systematic PPS
sampling. The sets of joint probabilities in the table are a part of 595 all possible
joint probabilities chosen to put some distances between units and the variances at
the bottom of the table are calculated using all joint probabilities.

As given in the table, the joint probabilities obtained by the approach of Asok and
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<Table 7.1> Recorded Acreage of Crops and Grass for 1947 and
Acreage under Oats in 1957 for 35 farms in Orkney

Recorded Crops |QOats 1957 Recorded Crops | Oats 1957

Farm no. and grass m; Y; Farm no. and grass m; Y;
1 50 17 19 140 43
2 50 17 20 140 48
3 52 10 21 156 44
4 58 16 22 156 45
5 60 6 23 190 60
6 60 15 24 198 63
7 62 20 25 209 70
8 65 18 26 240 28
9 65 14 27 274 62
10 63 20 28 300 59
11 71 24 29 303 66
12 74 18 30 311 58
13 78 23 31 324 128
14 90 0 32 330 38
15 91 27 33 356 69
16 92 34 34 410 72
17 96 25 35 430 103
18 110 24

Sukhatme show a close approximation to those by the exact method. The
probabilities for the approaches of Knottnerus and Hartley and Rao are also
similar each other, but the probabilities for the approach of Knottnerus is closer to
those by the exact method under Sampford’s method. This may be due largely to
the use of the joint probabilities in Brewer's (1963) sampling, as expressed in
(5.1).

For systematic PPS sampling, Knottnerus’ joint probabilities provide a smaller
variance than in Hartley and Rao. For Sampford's method, it has a smaller
variance when using exact joint probabilities. Note that the exact joint probabilities
under Sampford’s method give the lower variance than in Knottnerus’ approach
under systematic PPS sampling.

Therefore we would say that the exact joint probabilities for Sampford method
preserve the attractive low variance.
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<Table 7.2> Comparison of the exact 7;; 's and approximate m;; s

Sampford’s method Systematic PPS sampling

(54) Approximate 7, Approximate Approximate T,

Exact m; Y ” I

(Asok and Sukhatme) (Knottnerus) (Hartley and Rao)
1, 2) 0.000439 0.000439 0.000439 0.000441
1, 5 0.000527 0.000528 0.000528 0.000530
(3, 4) 0.000530 0.000531 0.000531 0.000532
(3,10 0.000623 0.000623 0.000624 0.000625
(5, 6) 0.000634 0.000634 0.000635 0.000636
(5,15) 0.000967 0.000968 0.000968 0.000970
(7, 8 0.000711 0.000711 0.000712 0.000713
(7,20) 0.001552 0.001553 0.001554 0.001556
(9,10 0.000780 0.000781 0.000781 0.000783
(9,25) 0.002464 0.002465 0.002465 0.002467
(11,12) "0.000930 0.000930 0.000931 0.000933
(11,30) 0.004094 0.004094 0.004092 0.004090
(13,14) 0.001247 0.001248 0.001249 0.001251
(13,35) 0.006389 0.006382 0.006381 0.006365
(15,16) 0.001492 0.001493 0.001493 0.001496
(15, 5) 0.000967 0.000968 0.000968 0.000970
(17,18) 0.001890 0.001891 0.001891 0.001894
(17,10 0.001159 0.001160 0.001160 0.001163
(19,20) 0.003556 0.003558 0.003558 0.003561
(19,15) 0.002291 0.002292 0.002292 0.002295
(21,22) 0.004442 0.004444 0.004443 0.004447
(21,20) 0.003974 0.003976 0.003976 0.003980
(23,24) 0.006965 0.006968 0.006966 0.006969
(23,25) 0.007367 0.007370 0.007368 0.007371
(25,26) 0.009395 0.009397 0.009395 0.009397
(25,30) 0.012345 0.012345 0.012344 0.012342
(27,28) 0.015767 0.015765 0.015767 0.015768
(27,35) 0.023196 0.023177 0.023202 0.023188
(29,30) 0.018213 0.018210 0.018215 0.018215
(29, 5 0.003359 0.003359 0.003358 0.003356
(31,32) 0.020824 0.020818 0.020830 0.020829
(31,10) 0.004094 0.004094 0.004092 0.004088
(33,34) 0.029050 0.029030 0.029077 0.029074
(33,15) 0.006085 0.006082 0.006080 0.006073
Variance 68319.534 68342.535* 68326.105 68360.497*

Note. Exact m,. are obtained in SURVEYSELECT procedure in the SAS system

ij

*x. The computed value of variance is correct to O(NY) .
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8. Conclusion

A lot of efficient unequal probability sampling schemes, especially some efficient
7 PS sampling methods have been developed. Many of them have not been used
in practice due to the decision problems of the joint probabilities. But owing to the
features incorporated in the statistical software, the calculation of those
probabilities no longer has the restrictions for certain sampling schemes such as
Sampford’ method. The traditional fixed ‘- sample size wPS scenario for variance
estimation using the method may be one of the attractive choices.
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