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Abstract

It has long been recognized that cancer is a genetic disease. To find this
measures of genetic instability, stain cells with chromosome specific probes using
chromosome in-situ hybridization technique is adopted. Even though in-situ
hybridization technique is powerful, truncation of nuclei often results in
under-representation of chromosome copies in slides due to the sectioning of tissue
blocks. Because of this problem we suggest three different methods to analyze the
cervical cancer data set. We observe that genetic instability is an increasing
function of histology and our suggested model is the best in detecting genetic
instability of tumorigenesis processes.
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1. Introduction

Cell division (proliferation) is a physiological process that occurs in almost all
tissues and under many circumstances. Normally homeostasis, the balance between
proliferation and programmed cell death, usually in the form of apoptosis, is
maintained by tightly regulating both processes to ensure the integrity of organs
and tissues. Mutations in DNA that lead to cancer disrupt these orderly processes
by disrupting the program regulating the processes.

Carcinogenesis (Andreeff and Pinkel, 1999) is caused by this mutation of the
genetic material of normal cells, which upsets the normal balance between
proliferation and cell death. This results in uncontrolled cell division and tumor
formation. This uncontrolled cell division is called genetic instability. The
uncontrolled and often rapid proliferation of cells can lead to benign tumors; some
types of these may turn into malignant tumors (cancer). Benign tumors do not
spread to other parts of the body or invade other tissues, and they are rarely a
threat to life unless they compress vital structures or are physiologically active
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(for instance, producing a hormone). Malignant tumors can invade other organs,
spread to distant locations (metastasize) and become life threatening.

More than one mutation is necessary for carcinogenesis. In fact, a series of
several mutations to certain classes of genes is usually required before a normal
cell will transform into a cancer cell. Only mutations in those certain types of
genes which play vital roles in cell division, cell death, and DNA repair will cause
a cell to lose control of its proliferation.

In this article, to find this measures of genetic instability, stain cells with
chromosome specific probes using chromosome in-situ hybridization technique is
adopted (Kim et al, 1993; Hittelman, 2001). This technique involves the use of
DNA probes that recognize either chromosome-specific repetitive target sequences
or sequences along the whole chromosome length or chromosome segments.
Although in-situ hybridization technique is powerful, truncation of nuclei often
results in under-representation of chromosome copies in slides due to the
sectioning of tissue blocks. Because of this problem we suggest three different
methods to analyze the cervical cancer data set.

The rest of an article is organized as follows. Section 2 provides data
description. Section 3 proposes three different methods and their results. We
observe that genetic instability is an increasing function of histology and our
suggested model is the best in detecting genetic instability of tumorigenesis
processes. A discussion is drawn in Section 4.

2. Data Description

There are 28 eligible patients in this study. A total of 77 tissue samples of
different stages of carcinogenesis(NORM, CIN1, CIN2, CIN3, CA) are obtained
from these patients. Histological progression is proceeded from Normal epithelium
to CIN 1, CIN 2, CIN 3, and Cancer. <Table 1> is the summary of samples by
histology. <Table 2> is the summary of diagnosis of these 28 patients.

<Table 1> 77 Samples by Histology

Histology Number of Samples
NORM 21
CIN1 15
CIN2 15
CIN3 20
CA 6
Total 77
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<Table 2> Summary of the Patients Diagnosis

Diagnosis |[Number of Patients
CA 11
CIS 12
CIN3 5
Total 28
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<Figure 1> Cervical Cancer Data for a Patient ID=C25011

One patient has all stages so we plot it in <Figure 1> as an example of the
data sets. The values (0-40) in <Figure 1> denote the observed chromosome
copies z;x 10 at location (z;y;),i=1,...,n, Since the coordinates of each data set
have different ranges, we standardized the range of them to [0,1]. So there is no
relative spatial information change. Basically our hypothesis of interest is that
multistep tumorigenesis process is an increasing function of genetic instability and
degree of genetic instability could be identified between the clinical diagnosis. To
check hypotheses we will employ three different approaches at the following
section.

3. Detection of Genetic Instability

This section proposes three different approaches to detect multistep
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tumorigenesis progress using chromosome index, chromosome polysomy, and
smoothed chromosome polysomy.

The first method uses chromosome index (Brambilla and Brambilla, 1999) which
is the average number of chromosome copy per experimental cell divided by the
average number of chromosome copy in normal cell. We plot this in <Figure 2>.
Each patient is connected with different line types and this also applied to
<Figure 3> and <Figure 5>. Since portions of nuclei were cut in the preparation
of tissue sections, the average number of labeled spots per nucleus in normal cells
was less than the expected 20. This point is a reason why we develop the
following 2 procedures.

Genetic Instability in Origina!l Data using Cli
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<Figure 2> Genetic Instability in Original Data using CI(Chromosome Index)

The second method applies chromosome polysomy which is a proportion of data
points greater than some predefined cutoff point. We use 15 as the cutoff point
which is plotted in <Figure 3>.

Final method uses smoothed chromosome polysomy. The weak point of the first
and the second method is that the values are integers so they are insensitive to
detect Instability of tumorigenesis process. The other weak point of the above two
methods is that they ignore spatial information residing in tissue samples(Cressie,
1993). To overcome these weaknesses, we first smooth each tissue sample using
nearest neighbor method(Besag, 1974).
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Genetic Instability in Criginal Data using % > 15
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<Figure 3> Genetic Instability in Original Data Using %>15

We use first and second order nearest neighborhood schemes. First order
scheme uses 4 sample points nearest to each point, then arithmetic mean of 5
points including point itself is a smoothed chromosome polysomy. We might use a
kernel method or weighted mean instead of arithmetic average. Second order
scheme uses 8 sample points nearest to each point. Furthermore we also
incorporated maximum distance of all cells. That is all cells within each
neighborhood scheme should be within a maximum distance d. To find this we
first fit each data set using spherical variogram(Cressie, 1993),

0, h=0
v(h)=1{co+cl3h/(2a)— h*/(2d%)), O<h<a
¢+ h=a

where a is range, ¢, is called nugget, and cy,+c is sill value. h is called

separation or lag. This variogram model is most widely used in spatial analysis.
The maximum distance is then set to median of all ranges, 0.273, for a robust
purpose, since the range contains the information on how far data are correlated
in space. We might use mark variogram instead of (geostatistical) variogram that
used in this article. However it will be enough to use a (geostatistical) variogram
when we estimate a range since it is a property of long-range variability(Stoyan
and Walder, 2000; Diggle, 2003). So we will stick to use (geostatistical) variogram.

After smoothing, we need to find an appropriate cutoff point to detect instability
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of cells. To achieve this six lymphocyte data sets for the normal cells were used
and plotted in <Figure 4>. Legends are the same as those of <Figure 1>. We
follow the same steps as genetic instability data set. 95 percentiles from the
distribution of nearest neighbor means of all lymphocyte data sets are obtained.
They will be used as the cutoff points since they contain the information of what
is abnormal for the normal data set. 95 percentiles of the first and second order
nearest neighborhood schemes are 15 and 14.44. The second order nearest
neighborhood with this cutoff 14.44 are plotted in <Figure 5>. The other plot is
not presented because it is similar to <Figure 5>.

Plot of all lymphocyte data sets
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<Figure 4> Six lymphocyte data sets

Looking at three plots(<Figures 2, 3, 5>) we observe that genetic instability is
an increasing function of histology for all three plots. However the slopes of
graphs are a little different. So we fit the random-coefficient regression model for
the above three plots (Littell et al, 1996). We test the hypothesis that slopes are
the same among 3 groups(Cancer, CIS, and CIN3 groups). P-values for this
hypothesis are 0.1281, 0.5914, and 0.0028 for each method which reveals that the
final method is the best in detecting genetic instability of tumorigenesis processes.
We plot the fitted model in <Figure 6> by each group and in <Figure 7> by
three different methods.
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Genetic Instability in Smoothed data
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<Figure 5> Genetic Instability in Smoothed Data
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<Figure 6> Fitted models by group: CI denotes Chromosome Index, PS denotes
Polysomy, and SMPS denotes Smoothing+Polysomy
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<Figure 7> Fitted models by method: CI denotes Chromosome Index, PS
denotes Polysomy, and SMPS denotes Smoothing+Polysomy

4. Discussion

We found that chromosome in-situ hybridization is useful for detecting genomic
instability on tissue sections. The nuclei truncation problem caused by tissue
section can be addressed by nearest neighbour averaging. Genetic instability
increases with progressive histology in the multi-step tumorigenesis process.
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