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Bayesian Method
on Sequential Preventive Maintenance Problem

Hee Soo Kiml), Young Sub Kwon? and Dong Ho Park3®

Abstract

This paper develops a Bayesian method to derive the optimal sequential
preventive maintenance(PM) policy by determining the PM schedules which
minimize the mean cost rate. Such PM schedules are derived based on a general
sequential imperfect PM model proposed by Lin, Zuo and Yam(2000) and may
have unequal length of PM intervals. To apply the Bayesian approach in this
problem, we assume that the failure times follow a Weibull distribution and
consider some appropriate prior distributions for the scale and shape parameters of
the Weibull model. The solution is proved to be finite and unique under some mild
conditions. Numerical examples for the proposed optimal sequential PM policy are
presented for illustrative purposes.

Keywords : Sequential PM; Bayesian approach; Age reduction; Optimal PM
schedule; Hybrid PM model; Prior distribution.

1. Introduction

A preventive maintenance(PM) policy specifies how the PM activities should be
scheduled. Each PM action is taken to keep the repairable system at the desired
level of successful operation and it may include minimal repair, perfect repair or
replacement of the system as well as its components.

Many authors have proposed several PM models, either periodic or sequential,
and obtained the best PM policies by optimizing several criteria regarding the
operating cost.

Nakagawa (1986) considers several periodic and sequential PM policies for the
system with minimal repair at each failure. For these models, the PM action is
conducted at periodic times kz,k=1,2,---, N, for periodic PM and at sequential
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times z;, ¢, + 4, -*-, z; +---+ 2z, where x;, z,,'-+, x5y are not necessarily equal.
When a failure occurs between the PMs, a minimal repair is done and the system
remains in the same state as it was just prior to the failure. Canfield (1986)
considers a periodic PM policy for which the PM slows the degradation process of
the system, while the hazard rate keeps monotone increase with the age reduction
at each PM. Park, Jung and Yum (2000) derive the optimal periodic PM schedules
by incorporating various cost structures into Canfield’s model. Lin, Zuo and Yam
(2000) [LZY (2000)] propose a general sequential imperfect PM model under which
each PM not only reduces the effective age of the system but also adjusts the
hazard rate function. Such a model is referred to as a hybrid PM model in the
sense that they combine two aspects of PM effects called the age reduction PM
model and the hazard rate adjustment PM model.

The objective of this paper is to determine the optimal PM schedules based on
LZY (2000) by adopting the Bayesian approach on certain unknown parameters of
the PM model. As a criterion for the optimality of the PM model, we use the
mean cost rate during the life cycle of the system until the system is replaced by
a new one. The Bayesian approach could be quite flexible when the failure
distribution of the system is either unknown or contains uncertain parameters,
which is common in most of the practical situations. Mazzuchi and Soyer (1996)
adopt a Bayesian approach on the random parameters of a Weibull model to solve
the optimal replacement problem for both the block replacement protocols with
minimal repair and the age replacement protocols by minimizing the expected
long-run average cost. Their models have been extended by Juang and Anderson
(2004), in which the minimal repair cost is assumed to be random as well.

In Section 2, the necessary notations and assumptions are listed and we present
the hybrid PM model proposed by LZY's (2000). Section 3 discusses the Bayesian
method to derive the optimal adaptive sequential PM schedules minimizing the
mean cost rate by assigning appropriate prior distributions on both shape and
scale parameters of the Weibull model. The mathematical expressions to formulate
the mean cost rate during the life cycle of the system is derived as well. Section
4 provides numerical examples to illustrate the proposed Bayesian method and
analyzes the effects of PM cost and replacement cost on the optimal adaptive
sequential PM policy. Concluding remarks is given in Section 5.

2. Sequential imperfect PM model

The hybrid PM model due to LZY (2000) takes the advantages of the age
reduction PM model and the hazard rate PM model by combining them. Under



Bayesian Method on Sequential PM Problem 193

such a hybrid PM model, each PM not only reduces the effective age of the

system to a certain value but also adjusts

the slope of the hazard rate so that

the degradation process of the system slows down due to the PM effects,
although the slope of hazard rate keeps increasing with the number of PMs. Each
PM is supposed to be performed at a sequence of intervals which may have
unequal lengths.

The following notations and assumptions are used throughout this paper.

Notations

Yx

ay.

Ay,

by

N
C})m
C,

re

C

mr

time to failure

hazard rate without PM

t
cumulative hazard rate without PM, H(t) = f h(z)dz
0

hazard rate between the (k—1) st and the k¥ th PMs

cumulative hazard rate between the (k—1) st and the k& th PMs

interval length between the (k—1) st and the k th PMs
k
the k th PM time, z, = Y, ;
i=1
effective age of the system just before the k th PM
adjustment factor in hazard rate due to the k th PM,

1=a0 = a <---= Ay
k=1

Ila: k=12~

i=0

improvement factor in effective age due to the k& th PM,
0=by< b << by, <1

number of scheduled PMs before replacement

unit cost of PM

cost of replacement

1 unit cost of minimal repair

Assumptions
1) The system operates on the interval {0,co).

2) When there are no PM interventions, the hazard rate of the

system

is
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continuous and strictly increasing function.

3) It takes negligible time for PM, minimal repair and replacement.

4) PM is performed at z,,29,"**,2y_;, and the system is replaced at zy by a
new one.

5 The hazard rate function becomes h,,,(z,) =4, h(b,y,) immediately after the
k th PM when it was h.(z,) = 4,h(y,) just before the PM. After the k th PM
is performed, the hazard rate function is expressed as A, h(by,+z) for

z>0.

Let h(t) be the hazard rate function of the system when no PM actions are
taken and let y, be the effective age of the system just before the k¥ th PM

under the hybrid model suggested by LZY (2000). Then, the system has the
hazard rate A,h(t) between the (k—1) st and the k¥ th PMs, where ¢ is

measured as the effective age of the system. The effective age of the system
becomes by _,y;_, right after the (k—1) st PM and then  becomes

Yo =%+ b xp- t b 1b_ o o bybyzy just before the kK th PM. It is also
clear that y, =z, +b,_,y.-,- If t is measured as the actual age of the system,
then the hazard rate is equal to hy(z,_;) right after the (k—1) st PM and then
becomes h;(z,) just before the ¥ th PM. The hazard rate functions for the

hybrid PM model, the hazard rate adjustment PM model and the age reduction
PM model before and after the first PM is performed are shown in <Figure 2.1>.

'y
Hazard
Rate Hybrid PM
Function : Model
hifr) /‘
/7 Hazard Rate adjustment
Model
Aterpm 7o PM Mode
s
YR ~" Age Reduction
e PM Model
Before PM Vd o
/s
i
Y
P '/
A Age Reduction " \ Time ¢
Amount First PM
Time

<Figure 2.1> Hazard rate function for the hybrid model
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Under the hybrid PM model, the mean cost rate is expressed as

N
Cour 20 A H ) = Hlby 93]+ (V=1)G, + G
Crpy = —2=1 — . (2.1)

E (1—b )y +yn
k=1

where the numerator of the expression (2.1) means the total cost needed until the
system is replaced at V¥ th PM by a new one and the denominator denotes the
total time until then.

Based on the mean cost rate function given in equation (2.1), LZY (2000)
develop non-Bayesian optimal sequential PM policies by calculating the PM times
and the number of scheduled PMs for which the mean cost rate is minimized.

3. Bayesian method on sequential PM model

For non-Bayesian method to find the optimal sequential PM policy, the
parameters are assumed to be fixed. However, in most of the practical situations,
the failure distribution is either unknown or contains several unknown parameters
and thus they must be estimated from the failure data. In such cases, the
Bayesian approach could be quite effective to estimate these unknown parameters
by assuming the prior distributions for them.

In this section, we discuss an optimal sequential PM policy based on the LZY's
(2000) hybrid PM model in the context of Bayesian concepts by considering the
random parameters. To derive the Bayesian optimal sequential PM policy, we
consider the case when the failure times follow a Weibull distribution with the
following hazard rate function.

Rt)=aft’ "', t20,a>0,8>1, (3.1)
where o and # are the scale and shape parameters, respectively. Under the hybrid
PM model discussed in Section 2, the hazard rate function can be obtained
recursively as

aft? ! for 0=st< 2
k=1

g-1
Akaﬂ(t— E(l—bi)yi) for z,., <t< z,

i=1

h(t) = (3.2)

for k=1,2,---,N,h,(t)=h(t) and z, =y, =2,=0. By applying the results given
in Nakagawa (1986), we obtain the explicit formula for the mean cost rate as
follows.
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N
Z szk 1}+ N—-1 )C;)m+a‘e

C(y17y27"';yN?N): N—1
kZ (1=by)yr +yn
=1

M=

Cmr Ak{ayg - a(bk-— 1Y5— l)ﬁ} + (N_ 1)0;)m + C’re
_ k=1 _ ‘ (3.3)
21 1- bk Y T YN

The formula (3.3) can also be derived by using the expression (2.1) as well. To
determine the optimal sequential PM schedules for the Weibull model by adopting
the Bayesian approach, we utilize the adaptive estimation schemes to update
uncertainty about « and S based on the failure data of the system observed
during the current life cycle and thus, reevaluate the optimal PM schedules for the
next life cycle.

To obtain the no-data estimation for the optimal sequential PM schedules in the
initial life cycle, we assign a gamma distribution and a discretized beta
distribution as prior distributions for scale parameter o and shape parameter 3,
respectively. Such priors have been widely used, for instance in Mazzuchi and
Soyer (1996) and Juang and Anderson (2004) due to its great flexibility in
presenting the prior uncertainty. In particular, although the shape parameter is
continuous in nature, it is more suitable in this model to discretize the value of

B by a finite number of intervals. By adjusting the size of each interval, the
prior may have more flexibility to describe the pattern of 3 .

The prior distributions for o and 8 are given by

b a-le=ba = > 0,b>0 (3.4)

~
Q
Il
Q

and
B+ 6/2

Pr(8=p)= 9(Bldp= P, (3.5)

—6/2
respectively, where B, =p,+6(21—1)/2 and 6= (8,—B;)/m for 1=1,2,---,m.
Here, ZP, =1 and g¢(B) is a beta density to be defined as

=

(8) = I'le+d) (5“51))0—1(5u"ﬁ)d—1
g - F(C)F(d) | (,BU_IBL)C+d_1 ’

OéﬂLé,@éﬂy,C>0,d>0 (36)

Initially, o and B are independent priors and thus, the joint prior distribution of
« and # can be obtained as the product of two marginals given in (3.4) and
(3.5). That is.
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a
b —1_-—ba

Mmm:fwﬁﬁw=ﬁﬂ=rwyf e . P,

To determine the optimal sequential PM schedules based on the prior

distributions of « and 3, we need to formulate the mean cost rate by taking the
expectation on (3.3) with respect to o and 8. Given the priors (3.4) and (3.5),
the mean cost rate can be expressed as

CB(ylayQ""v?/NvN) = Ea,ﬁc(yl’ym'”’yNaN)

ZA {ayk ar(by - 1Yy - 1) }+(N—1)q,m+0re

= Ly,g N—1

E (1- bk)yk +yn

k=1

m N
:E[ ’Z’; {k bk 1yk—1)1}+(N‘1)qu+CreP

Z 1_bk Yt YN

3.7

3.1. When N 1is known

If we differentiate the mean cost rate given in (3.7) with respect to each y,,

k=1,2,---,N, and set them equal to 0, then we have

a -
Cymr?lZAN:Bl y?\’ l‘Pl = CB(yh y2a"'ayN)N) (3.8)
=1
and
l;ﬂl{Akygl_ ! - Ak+ 1 bk (bkyk)ﬁ,_ I}Pl = [2« :IIBZAN(l - bk)y?\}’ 1Pl7 (3.9)

for k=1,2,---,N—1.

Theorem 3.1. For a fixed y,(0 < yy < o) , the solution of equation (3.9) with
respect to y,(y, >0) exists and is unique if 1—awb, >0,k=1,2,---,N—1, and
B>1, 1=1,2,,m

Proof. Let g(y,) denote the left hand side of equation (3.9). Then g(y;) is 0
when y,=0. If 1—awb, >0 and G,> 1, the derivative of g(y,) with respect to
¥, is shown to be positive as follows.
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-2

Eﬂz 1- 6y A (1—%(’5:')131g Y 60-B)y A —ab)P> 0.

I=1 =1
Thus, g(y,) is a strictly increasing function of y; and so the solution of equation
(3.9) with respective to y, is finite and unique.

It was pointed out in LZY (2000) that the condition of 1—a.b, >0 means that
the hazard rate adjustment factor a; should be smaller than the inverse of the
improvement factor b, which in turn, implies that the hazard rate right after the

k th PM, a.h,(byy,), should be smaller than the hazard rate just before the PM,

h{y,). Such a condition can be satisfied if each PM tends to improve the

system, which is quite reasonable.
Substituting each solution, y, (k= 1,2,--,N—1), of equation (3.9) into equation

(3.8), we obtain

%l;‘l [ANﬁz yﬁ' {g 1_bk Y T Yn(— ZAk{yk bk Y- 1) l}]PI (3.10)
_ W-1)G,,+C,
Cor ’
where each y,, (k=1,2,---,N—1) is a function of y,. Thus, the left hand side of

equation (3.10) becomes a function of y, alone.

Theorem 3.2. If 1—ab, >0, k=1,2,--,N—1 and §,>1, [=1,2,---,m, then

the solution of equation (3.10) with respect to y,(yy > 0) exists and is unique.

Proof. Since

m m

Eﬂzyf’ —14,0- akbil)Pl = Y8y — 14, (1~ ab )P > 0,
=1

=1
for k=1,2,---,N—1, the solution of equation (3.9) with respect to y, is zero when
yy=0. Thus, if y,=0, the left hand side of equation (3.10) equals zero and

thus is smaller than the right hand side of (3.10). In addition, the derivative of
equation (3.10) with respective to y, is shown to be positive as follows.

N—-1
_2 ANB (B, — 1)yy - 2{2(1—bk)yk+yN}]Pl> 0.
l—l k=1

Thus, the left hand side of equation (3.10) is a strictly increasing function of
yn{yy >0)  and equals zero at y, =0. Consequently, the solution of equation

(3.10) with respect to  yy(yy > 0) exists and is unique.
Once the values of y,,k=1,2,---,V, are obtained, then z, can be -calculated

from the relation z;, =y, —b,_¥s-1,k=1,2,---;,N when N is known.
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3.2. When N is unknown

As for the case when neither N nor z;,z,, -,z is known, we may proceed
similarly as when N is known. Firstly, we assume that N is fixed and determine

the wvalues of xi,x;,---,mjv as a function of NV alone by applying the method
discussed in Section 3.1. Then, the value of NV * is determined as

N = ]\Ifn;nl Cylzy (NV), 25 (N), -,z V), N).

Once the value of N' is determined, then xf,x;,‘--,w:\,- can be obtained by

replacing N by N* in its expressions.
3.3. Adaptive sequential Bayesian method

In this section, we discuss the concept of an adaptive sequential PM strategy
which is based on the posterior distributions of @ and # . When the failure data
is recorded at the end of each life cycle, the priors for o and B8 are adaptively
updated and hence become the prior distributions for the next life cycle. Let N

and T, =(Tyy, Tiy,o+, Ty,,) denote the number of failures and the failure times

between the (k—1) st PM and the k& th PM for k=1,2,---,N. Then, the joint
probability density of (_A, ) can be written as

ny

f(tk17tk2""7tkn,k) = {;I;[lhk(tkj)}exp{_ H,(z,)},

where H(t / hk )ds. To simplify the notations, we let t={_t1,_t2,-~,_tN}

Zp

denote the vector of observed failure times throughout the life cycle of the
system. Given t, the posterior distributions of o and 3 are derived and then it
becomes the prior distributions for the next life cycle of the system. The
likelihood function of « and B8 can be written as

L(a,B 1 t) ka bt in,) (3.11)
Ny k=1 B—1
AT T i, S0 00 |
c=1j=1 i=1

k=1

-exp[— k‘gleka{(zk -Ya- bi)yi)ﬂ - (zk_ L= ki]l(l - bi)yi)ﬁ}] .

i=1 i=1

Using Bayes’ theorem, the joint posterior distribution of a and 3 can be
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a+2nA—1 Zn
o B 91 (B, exp{ g, (B, }Pz

expressed as fla,B; | t)= = ,
n a+ Enk
hzl PhﬁZ 91 (8,)T (a+k21nk)/ (92(8,)) }
where g,() and g,(-) are defined as

HHAk(th 211 bi)yi)7—1

1j=1 i=1

and

N k-1 ¥ k=1 v

92(7) =b+ ZAI: (Zk_ E (1 _bi)yi) - (zk—l - E (1 “bi)yi) )

k=1 i=1 i=1
respectively. Since, f(a|8,,t|) = f(c,B,t)/Pr(B=0,¢t), the conditional posterior
distribution becomes a gamma distribution with parameters of a and b which
has the following probability density function.

Ry
a+t Zm.— 1 Ay

\ =1 a+ an—l
(92(6,)) = a ¢t -exp{—a(QQ(ﬂl))}'
F(a+ Z‘m)
k=1

f(alﬁlai):

N
where o' =a+ Enk and b" =g,(8,) are the updated shape and scale parameters.
k=1

In addition, since Pr(8=0,11)=Ff(a.3 1 t)/fla|B,1), the posterior distribution of §

can be written as

ink a+ ink
7 9108)(9:(6)) 7

71 2\ . a+ in,.. '
E P, B h g1(ﬂh)/(92(/6h)) =

(;8 ﬂl[t) Pl

Note that the posterior distributions of o and 8 are no longer independent. The
optimal sequential PM schedules based on the posterior distributions of a and g
can be calculated in a straightforward manner by replacing o, b and P, in

equation (3.7) by a, b and P,*, respectively, and by finding N " and the optimal

. * * *
PM intervals z,zy, "%y~

4. Numerical example

To illustrate the Bayesian method proposed in Section 3, we consider the case
when the failure times follow a Weibull distribution and derive the Bayesian
optimal sequential PM schedules based on both prior and posterior distributions for
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two parameters « and 8. The values of parameters are taken as C,,, = 1.0,
ap = (6k+1)/(5k+1), b, =k/(2k+1), k=0,1,2,~-. As for the values of C,,
and C,,,, we consider the various ratios of G,,,,/C,, and C,/C,, so that we
can analyze the impact of each costs on the results. Regarding the prior
parameters, we take ¢=2.0, 5=3.0, ¢=d=2.0, B3,=2.0, B,;,=40, m=20

and thus § is set equal to (4.0—2.0)/20=10.1.

<Table 4.1> Optimal Bayesian PM schedules based on adaptive schemes
when C,./C,, =2.0

pm
Optimal Optimal Mean Cost
G, /& | Cycle Failure Times
PM Number PM Interval Rate
0 .
1 z;=0.9111 3.3029
1 .
2 0.8745 1 z, = 0.8555 3.4728
2 .
0.5315 1 z) = 0.8238 3.6032
3 .
0.7108 1 Ty =0.7947 3.6888
@1 =0.9319 z,=0.5247 z,=0.4246
0
5
xy;=0.3664 x;=0.4935 49505
. 0.7665 2.2774 2.3235 z}=0.8508 a5=04787 gz =0.3872
5 5.4296
24238 2;=0.3340 z;=0.4503
5
0.7665 2.2774 2.3235 21 =0.8033 z,=0.4547 z;=0.3694
2 5 , . . 5.6242
2.4238 z,=0.3200 ;= 0.4285
z;=0.7914 1;=0.4499 = 0.3667
3 0.8611 1.5074 2.2936 5 5.6204
zy=0.3187 z;=0.4242

<Table 4.1> illustrates the adaptive nature of the Bayesian approach by
considering three life cycles of the system. At the end of each cycle, the current
failure data is used to update the parameters a,b and P, and thus, the optimal

sequential PM schedules during the next life cycle is renewed based on the
updated parameter values. In this example, we start with the simulated data using
the hazard function given in (3.1) with a =1 and #=3 and the numerical results
are listed in <Table 4.1>. To analyze the effects of the PM cost and the
replacement cost on the optimal PM schedules, we consider three cases when the
ratio of C../C,, is equal to 2.0,5.0, 10.0 and for fixed ratio of C,./C, =2.0.

pm mr pm
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<Table 4.1> Continued

Optimal Optimal Mean Cost
GG, | Cycle Failure Times
PM Number PM Interval Rate
z;=1.0584 z,=0.5969 =x,=0.4836
0 8 2y =04178 25 =0.3694 <;=03301 | @447
€7 =0.2967 1z =0.4215
0.4710 0.8975 0.9075 T =0.9093 x,=0.5208 z;=0.4270
1 0.9212 0.9615 2.7486 9 z;=0.3732 2;=0.3339 z;=0.3021 6.9197
o 3.9194 T:=0.2749 z3=0.2510 =z,=0.3516
0.4170 0.9404 1.0103 ¢ =0.8868 @,=0.5042 z3=0.4111
2 1.0503 1.3081 2.6728 9 £, =0.3574  2;=0.3180 =z;=0.2861 | ;35,
3.6682 3.6919 z;=0.2580 xz3=0.2351 z,=0.3332
0.2591 0.3558 0.8103 ©;=0.8368 7,=0.4811 ;=0.3956
3 15508 1.6968 2.1539 9 ©;=0.3467  @;=03110 2;=0.2821 7.3751
3.1454 z0=0.2575 z5=0.2358 24=0.3281

In our adaptive scheme, we first derive the optimal PM schedules with no
failure data and then, the next failure data are adaptively generated based on that
schedules. Once the failure data is generated, then the prior parameters a,b and
P, are updated and the renewed sequential optimal PM schedules for the next
life cycle is calculated.

<Table 4.1> shows that when all the costs are fixed, then the PM intervals get
shorter as the number of PMs increases except the last one, which could be due
to the fact that at the end of the last PM the system is replaced by a new one.

It is also observed that the more the parameter values are updated in the
adaptive schemes, the shorter the PM intervals become although the difference is
very small. It is quite interesting to note from <Table 4.1> that as the
replacement cost becomes much higher than the PM cost, then not only does the
number of PMs increase, but also the PM intervals become slightly greater to
reduce the mean cost rate.

5. Concluding remarks

This paper considers the hybrid PM model suggested by LZY (2000) to derive
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the optimal sequential PM schedules by adopting the Bayesian approach. The
hybrid model combines the age reduction PM model and the hazard rate
adjustment PM model and thus, each PM not only reduces the effective age of the
system, but also slows down the degradation process under this model. In this
paper, we discuss the Bayesian method to determine the optimal sequential PM
schedules which minimize the mean cost rate during the life cycle of the system.
For Bayesian context, the parameters characterizing the PM model are considered
to be random, instead of fixed constants.

To obtain the Bayesian optimal sequential PM schedules, we consider the case
when the failure times follow a Weibull model with scale and shape parameters

o and B and assume the gamma prior and the discretized beta prior for these
two parameters. Applying the adaptive estimation schemes to update the values of
a and @ based on the failure data observed during the current life cycle, the
optimal PM schedules are renewed for the next life cycle sequentially.

It is interesting to note that the structures of replacement cost, PM cost and
minimal repair cost have the significant effects on the optimal sequential PM
schedules. Such costs not only affects the number of scheduled PMs, but also
adjusts the PM intervals. This is mainly due to the fact that the structure of
various costs is essential to determine the mean cost rate and we use the mean
cost rate as the criterion for optimality of the proposed sequential PM policy.
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