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Abstract This paper compares regression and neural network modeling approaches to predict
competitive biosorption equilibrium data. The regression approach is based on the fitting of
modified Langmuir-type isotherm models to experimental data. Neural networks, on the other
hand, are non-parametric statistical estimators capable of identifying patterns in data and corre-
lations between input and output. Our results show that the neural network approach outper-
forms traditional regression-based modeling in correlating and predicting the simultaneous up-
take of copper and cadmium by a microbial biosorbent. The neural network is capable of accu-
rately predicting unseen data when provided with limited amounts of data for training. Because
neural networks are purely data-driven models, they are more suitable for obtaining accurate
predictions than for probing the physical nature of the biosorption process.
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INTRODUCTION

Biosorption is a novel environmental technology that
employs microbial or plant biomass for the cleanup of
metal-bearing industrial wastewaters [1]. The basis of
metal biosorption has been attributed to the existence of a
myriad of surface ligands like carboxyl, sulfate, amino,
and hydroxyl moieties. These ligands differ in their affin-
ity and specificity for metal binding. As a result, biosorp-
tion is a non-specific process. A given biomass will bind
more than one metal ion when exposed to industrial
waste streams that typically contain several metal ions.
Hence, equilibrium and kinetic data obtained from single
metal systems is of limited practical use. Reliable data on
multimetal systems is essential for process design and
optimization.

Despite the practical importance of multimetal biosor-
ption, very few studies have addressed the measurement
of multimetal equilibrium data. This is because the
conventional batch techniques for generating such data
are very laborious, time consuming, and require large
amounts of toxic chemicals due to the numerous possible
combinations of metal ions and biomass species. One
way to reduce extensive manual manipulation is to use
modeling tools to predict biosorption equilibrium data.
Because metal biosorption is a non-specific process with
each metal binding site being able to take up any number
of metal species, competition for binding sites among
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metal species within a mixed metal solution is likely. In-
deed, most of the reported results show that the uptake of
a particular metal ion from a multimetal system was re-
duced when compared to uptake obtained from single
metal solutions, reflecting the presence of competitive
binding [2-7].

Various equilibrium isotherm models, usually of the re-
gression form, are available for describing competitive
biosorption. In most cases the measured data can be suc-
cessfully described using simple extensions of classical
isotherm models such as the Langmuir or Freundlich
model. An adequate body of work on the use of such em-
pirical isotherm models to describe the effect of competi-
tion on metal biosorption exists in the literature [8-11].
However, most of these studies have treated the models
as mathematical functions for correlating measured data
where model calibration is based on all available experi-
mental data. The ability of these models to predict unseen
data (i.e., data not used for curve fitting/model calibra-
tion) has not been adequately established.

Recently, there has been a growing interest in applying
novel modeling techniques such as artificial neural net-
works to the area of biosorption [12-14]. The predictive
power of neural networks stems from their ability to cor-
relate data without prior knowledge of the physical char-
acteristics and mechanisms of the system under
investigation. This work compares the ability of two
different approaches based on Langmuir-type and neural
network models to predict published equilibrium data on
the simultaneous biosorption of copper and cadmium by
a microbial biosorbent [2].
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METHODS
Regression Modeling

Various isotherm models based on the adaptations of
single-component Langmuir and Freundlich equations
have been used by researchers to describe competitive
biosorption equilibrium data. For example, the extended
Langmuir-Freundlich isotherm model has been used suc-
cessfully as an empirical equation for describing competi-
tive equilibrium data. The model equations for a binary
metal system are
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where g and C are the metal concentration in the biosor-
bent and solution at equilibrium, respectively, g, is the
maximum sorption capacity of the biosorbent, b is the
apparent affinity constant, and n is the Langmuir-
Freundlich exponent. A nonlinear least-squares regres-
sion program predicated on the Levenberg-Marquardt
method was used to fit Eq. (1) to experimental equilib-
rium data reported by Pagnanelli et al. [2].

Neural Network Modeling

A neural network is a mathematical representation of
the brain’s neurological functioning. It simulates the
brain’s learning process by mathematically modeling the
network structure of interconnected nerve cells. Because
neural networks operate directly on input-output data,
the essential requirement for neural network modeling is
sufficient amounts of data. A neural network is thus a
purely data-driven model made up of interconnected
processing elements called neurons that are organized in
layers [15].

A typical neural network has an input layer, one or
more hidden layer, and an output layer. The neurons in
the hidden layer, which are linked to the neurons in the
input and output layers by adjustable weights, enable the
network to compute complex associations between the
input and output variables. The inputs of the neurons in
the hidden and output layers are summed and the result-
ing summation is processed by an activation function. A
nonlinear sigmoid function is commonly used as an acti-
vation function in neural network modeling. The process
of determining the adjustable weights is known as train-
ing and it is analogous to the process of determining the

adjustable parameters of an isotherm model by regression.

The weights are initially selected random and an iterative
algorithm is then used to find weights that minimize dif-
ferences between the network-calculated and actual out-
puts. The most commonly used algorithm is the back-
propagation algorithm. In this training algorithm, the
error between the results of the output neurons and the
actual output is calculated and propagated backward
through the network. The algorithm adjusts the weights
in each successive layer to reduce the error. This proce-
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Table 1. Configuration of the feedforward neural network

Number of hidden layers 1
Number of hidden neurons 10
Activation function Sigmoid
Training algorithm Backpropagation
Training parameters

Learning rate 0.2

Momentum 0.5

dure is repeated until the error between the actual and
network-calculated output satisfies a prespecified error
criterion. Neural network modeling is thus a curve fit in
multidimensional space.

In general, feedforward neural networks with one hid-
den layer containing a sufficiently large number of hidden
neurons have been shown to be capable of providing ac-
curate approximations for any continuous nonlinear fun-
ction [16]. Because no specific guidelines exist for
choosing the optimal number of hidden neurons for a
given problem, this network parameter is often optimized
according to some empirical rules combined with trial
and error. In this work, a neural network model with a
single hidden layer was developed using Matlab v6.5 un-
der the Windows NT environment. The optimal number
of neurons in the hidden layer was determined using an
empirical approach based on the concept of incremental
pruning. A series of neural networks with increasing
nuraber of hidden neurons were constructed and trained.
It was found that the error between the actual and net-
work-calculated outputs reached a minimum value for
neural networks with 10 or more hidden neurons. To
avoid the pitfall of overfitting of data, the number of hid-
den neurons was limited to 10. Table 1 reports the con-
figuration of the neural network used in this work.

RESULTS AND DISCUSSION

Published data on the simultaneous biosorption of cop-
per and cadmium by Arthrobacter sp. biomass [2] was
selected for modeling in this work. The numerical data at
two pH levels is reproduced here in Table 2. The results
suggest that the main effect observed for the simultane-
ous biosorption data was a reduction in the uptake of one
metal in the presence of the other when compared to the
single-metal biosorption of either metal. Simulation re-
sults obtained from modified Langmuir-type models sug-
gest that the uptake of cadmium was markedly inhibited
in the presence of copper whereas the biosorption of
copper was not greatly reduced by the presence of cad-
mium [2]. Mutual suppression of uptake is commonly
observed in two-metal systems due to competition be-
tween the metal ions for the same surface binding sites.

To assess the relative performance of the two modeling
approaches the data patterns in Table 2 were split into
two categories. The data patterns used to optimize the
adjustable parameters of the Langmuir-Freundlich equa-
tion and the weights of the neural network were termed
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Table 2. Experimental data from Pagnanelli et al. [2] for the
biosorption of copper and cadmium on Arthrobacter sp. at two
pH levels

Data Cey Cea dey deq
pattern (mmol/L) (mmol/L) (mmol/g) (mmol/g)
pH 4

1 0.282 0.358 0.026 0.016
2 0.833 0.926 0.053 0.026
3 1.146 1.220 0.051 0.027
4 1.717 1.814 0.058 0.026
5 0.396 0.567 0.042 0.025
6 0.396 0.567 0.040 0.023
7 1.287 0.566 0.063 0.025
8 0.374 2.211 0.042 0.028
9 0.822 2.243 0.056 0.029

10 0.125 0.254 0.024 0.017

11 0.366 0.895 0.037 0.024

12 1.237 0.125 0.061 0.017

13 0.894 1.570 0.054 0.025

14 1.562 0.237 0.063 0.021

15 2.012 1.236 0.071 0.027

16 1.434 1.508 0.056 0.028

17 0.562 0.631 0.040 0.021

18 0.828 1.109 0.051 0.026
pH 5

19 0.193 0.331 0.060 0.016

20 0.475 0.630 0.075 0.024

21 1.041 1.235 0.101 0.029

22 1.303 1.530 0.119 0.028

23 1.590 1.837 0.123 0.033

24 0.559 0.482 0.080 0.020

25 1.012 0.546 0.109 0.019

26 1.442 0.568 0.120 0.018

27 0.321 1.006 0.049 0.040

28 1.062 1.148 0.110 0.029

29 0.523 0.326 0.075 0.015

30 0.155 0.266 0.040 0.018

31 0.325 1.256 0.053 0.032

32 1.569 2.145 0.145 0.036

33 2.015 0.124 0.165 0.006

34 0.856 1.256 0.094 0.032

35 0.748 0.938 0.085 0.025

36 0.323 1.558 0.054 0.038

37 1.236 0.326 0.123 0.015

the “calibration” or “training” set (data patterns 1-15
and 19-34) while the data patterns used to evaluate the
predictive capability of the two models were called the
“validation” or “test” set (data patterns 16-18 and 35-
37). Interpolative predictions of the two modeling ap-
proaches over the validation/test data sets are reported in
the next section.

Regression Modeling

Because of limited data patterns in the calibration sets
and the fact that Eq. (1) contains five adjustable parame-
ters, satisfactory convergence in the curve fitting exercise
was not always achieved. To ensure convergence, the
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Fig. 1. Copper and cadmium uptake values calculated by Egs.
(2) and (3) versus actual uptake values at pH 4 (A and B) and
pH 5 (C and D).
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Fig. 2. Neural network-calculated copper and cadmium uptake
values versus actual uptake values at pH 4 (A and B) and pH 5
(C and D).

functional form of the extended Langmuir-Freundlich
model was modified. The resulting best-fit equations are
simple variants of Eq. (1):

0.132C% Cer ~
pH 4: Gow = Cu 9os = — s (2)
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Fig. 1 displays the experimental values of g¢, and gc4
belonging to the calibration data sets (solid circles) and
the validation data sets (open circles) versus the corre-
sponding values calculated by Eqs. (2) and (3). The cri-
terion for measuring the accuracy of Egs. (2) and (3) is
the mean absolute relative error (MARE):

i‘qex k" Geax
MARE (%) =—-—100 R ’ 4)
m

qexp,k
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Table 3. MARE from Egs. (2) and (3) and the 3-10-2 neural network for correlating and predicting the data patterns listed in Table 2

MARE (%)
pH 4 pH5
Model Cu cd Cu Cd
Part A: Egs. (2) and (3)
Calibration/training set 6.7 9.5 8.4 6.7
Validation/test set 9.3 9.1 7.0 10.8
Part B: neural network
Calibration/training set 5.3 5.6 4.9 8.4
Validation/test set 3.4 3.5 5.3 10.9
0.15 4 dependent variables in the extended Langmuir-Freun-
S dlich equation: g¢, and gcq). The topology of the neural
3 014 network is designated 3-10-2 (3 input neurons-10 hid-
E den neurons-2 output neurons). The network was trained
< 005 4 using the training data sets (data patterns 1-15 and 19-
e 34). Its predictive capability was assessed using the test
data sets (data patterns 16-18 and 35-37). Fig. 2 shows
0 T T y the network-calculated output for the training and test
0 data sets plotted against the corresponding experimental
data. The solid circles represent the network-trained out-
put while the open circles denote the network-predicted
0.05 output for input variables belonging to the test sets. The
~ 0.04 - neural network model not only fit the training data very
%’ ) well but also provided predictions for test data that were
£ 0.03 - very close to those measured experimentally. The MARE
£ 002 values for the training and test sets are listed in part B of
3 Table 3.
S 001 - Table 3 indicates that the neural network outperforms
0 , . . Egs. (2) and (3) in terms of MARE in all but one case.
0 05 1 15 2 The reductions in MARE achieved by the neural network

Ccq (mmol/L)

Fig. 3. Neural network-calculated competitive isotherms for the
binary metal system at pH 5. (A) The effect of cadmium on the
equilibrium isotherms for copper; (B) The effect of copper on
the equilibrium isotherms for cadmium.

where q.,, represents experimental data, g., refers to
model calculation, and m is the number of data patterns.
The MARE in the two equations’ estimates of gc, and gcq
are tabulated in part A of Table 3. A line of unit slope, i.e.,
the line of perfect fit with points corresponding to zero
MARE is also shown in Fig. 1. The data point scatter of
the regression modeling approach can be clearly seen in
Fig. 1.

Neural Network Modeling

The feedforward neural network developed in this
work consisted of a single hidden layer with 10 neurons,
three input neurons representing the two solution phase
equilibrium concentrations (the independent variables in
the extended Langmuir-Freundlich equation: Cc, and
C.y) and pH, and two output neurons representing the
two biosorbent phase equilibrium concentrations (the

predictions over the regression predictions are in the
range of 1.7~5.9%. These numbers translate into im-
provements of 24~63% in prediction accuracy. Compari-
son of Figs. 1 and 2 confirms the tendency of the neural
network’s predictions to be closer to the line of perfect
prediction than those of regression. These results estab-
lish the effectiveness of the neural network approach as a
predictive modeling strategy for competitive biosorption
equilibrium data.

From a practical standpoint, the ability of neural net-
works to predict multimetal equilibrium data could sig-
nificantly reduce the amount of experimentation required
for biosorption studies. A suitably trained neural network
with good predictive capability for interpolation can be
used to generate highly accurate g versus C isotherm
plots. For example, the 3-10-2 neural network can be
used to generate the competitive equilibrium isotherms
shown in Fig. 3. The extent of competitive biosorption in
the binary metal system can be easily deduced from Fig. 3
but it is not immediately apparent from the numerical
data tabulated in Table 2. Generating competitive iso-
therms experimentally using conventional batch tech-
niques is not an easy task, because it is not possible to
control the equilibrium concentrations of metal ions. As a
result, such studies often yield a collection of paired equi-
librium data points with each point lying on a different



Biotechnol. Bioprocess Eng. 2006, Vol. 11, No. 1

isotherm. This is the reason why multimetal biosorption
data is often reported in tabular form.

CONCLUSION

We have demonstrated the application of regression
and neural network models to a two-metal biosorption
system and found the neural network modeling approach
to be superior to the regression modeling approach based
on modified Langmuir-type models. The neural network
trained with limited amounts of data is able to capture the
nonlinear and interacting relationships between equilib-
rium concentrations in the solution and biosorbent
phases. For this reason, neural network modeling serves
as a viable alternative to the traditional regression model-
ing approach and holds considerable promise for the
study of multimetal biosorption systems. However, it
should be noted that neural networks are better at inter-
polation than extrapolation due to their empiricism.
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