Nafion Composite Membranes Containing Rod-Shaped Polyrotaxanes for Direct Methanol Fuel Cells

  • Cho Hyun-Dong (Department of Applied Chemistry, University of Sejong) ;
  • Won Jong-Ok (Department of Applied Chemistry, University of Sejong) ;
  • Ha Heung-Yong (Korea Institute of Science and Technology) ;
  • Kang Yong-Soo (Department of Chemical Engineering, Hanyang University)
  • Published : 2006.04.01

Abstract

Cast Nafion-based composite membranes containing different amounts of organic, nanorod-shaped polyrotaxane were prepared and characterized, with the aim of improving the properties of polymer electrolyte membranes for direct methanol fuel cell applications. Polyrotaxane was prepared using the inclusion-complex reaction between ${\alpha}$-cyclodextrin and poly(ethylene glycol) (PEG) of different molecular weights. The addition of polyrotaxane to Nafion changed the morphology and reduced the crystallinity. The conductivity of the composite membranes increased with increasing polyrotaxane content up to 5 wt%, but then decreased at higher polyrotaxane contents. Well-dispersed, organic polyrotaxane inside the membrane can provide a tortuous path for the transport of methanol, as the methanol permeability depends on the aspect ratio of polyrotaxane, which is controlled by the molecular weight of PEG. All of the Nafion-based, polyrotaxane composite membranes showed a higher selectivity parameter than the commercial Nafion films did.

Keywords

References

  1. K. D. Kreuer, J. Membr. Sci., 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  2. J. A. Kerres, J. Membr. Sci., 185, 3 (2001) https://doi.org/10.1016/S0376-7388(00)00631-1
  3. V. Tricoli, N. Carretta, and M. Bartolozzi, J. Electrochem. Soc., 147, 1286 (2000) https://doi.org/10.1149/1.1393351
  4. R. W. Kopitzke, C. A. Linkous, H. R. Anderson, and C. L. Nelson, J. Electrochem. Soc., 147, 1677 (2000) https://doi.org/10.1149/1.1393417
  5. D. H. Jung, Y. B. Myoung, S. Y. Cho, D. R. Shin, and D. H. Peck, Int. J. Hydrogen Energy, 26, 1263 (2001) https://doi.org/10.1016/S0360-3199(01)00065-9
  6. D. Kim, M. A. Scibioh, S. Kwak, I.-H. Oh, and H. Y. Ha, Electrochem. Commun., 6, 1069 (2004) https://doi.org/10.1016/j.elecom.2004.07.006
  7. V. Baglio, A. S. Arico, A. D. Blasi, V. Antonucci, P. L. Antonucci, S. Licoccia, E. Traversa, and F. S. Fiory, Electrochimica Acta, 50, 1241 (2005) https://doi.org/10.1016/j.electacta.2004.07.049
  8. I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, and S. Nomura, Solid State ionics, 162-163, 237 (2003) https://doi.org/10.1016/S0167-2738(03)00260-1
  9. J. Won and Y. S. Kang, Macromol. Symp., 204, 79 (2003)
  10. M.-K. Song, S.-B. Park, Y.-T. Kim, K.-H. Kim, S.-K. Min, and H.-W. Rhee, Electrochemica Acta, 50, 639 (2004) https://doi.org/10.1016/j.electacta.2003.12.078
  11. J.-H. Chang, J. H. Park, G.-G. Park, C.-S. Kim, and O. O. Park, J. Power Sources, 124, 18 (2003) https://doi.org/10.1016/S0378-7753(03)00605-0
  12. D. W. Kim, H.-S. Choi, C. Lee, A. Blumstein, and Y. Kang, Electrochemica Acta, 50, 659 (2004) https://doi.org/10.1016/j.electacta.2004.01.125
  13. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I.-H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Membr. Sci., 214, 245 (2003) https://doi.org/10.1016/S0376-7388(02)00555-0
  14. I. Honma, S. Hirakawa, K. Yamada, and J. M. Bae, Solid State Ionics, 118, 29 (1999) https://doi.org/10.1016/S0167-2738(98)00450-0
  15. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, J. Membr. Sci., 203, 215 (2002) https://doi.org/10.1016/S0376-7388(02)00009-1
  16. B. J. Chisholm, R. B. Moore, G. Barber, F. Khouri, A. Hempstead, M. Larsen, E. Olson, J. Kelley, G. Balch, and J. Caraher, Macromolecules, 35, 5508 (2002) https://doi.org/10.1021/ma012224n
  17. A. Harada and M. KAachi, Macromolecules, 23, 2821 (1990) https://doi.org/10.1021/ma00212a039
  18. M. K. Song, Y. T. Kim, J. M. Fenton, H. R. Kunz, and H. W. Rhee, J. Power Sources, 117, 14 (2003) https://doi.org/10.1016/S0378-7753(03)00166-6
  19. K. Lii, A. Ishihara, S. Mitsushima, N. Kamiya, and K.-i. Ota, J. Electrochem. Soc., 151, A639-A645 (2004) https://doi.org/10.1149/1.1652052
  20. J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003) https://doi.org/10.1021/ma034014b
  21. M. A. Vargas, R. A. Vargas, and B.-E. Mellander, Electrochim. Acta, 44, 4227 (1999) https://doi.org/10.1016/S0013-4686(99)00137-1
  22. J. H. Lee, J. Won, I. H. Oh, H. Y. Ha, E. A. Cho, and Y. S. Kang, Macromol. Res., 14, 101 (2006) https://doi.org/10.1007/BF03219075
  23. A. Harada and J. Li, M. Kamachi, Macromolecules, 26, 5690 (1993)
  24. R. B. Moore III and C. R. Martin, Macromolecules, 21, 1334 (1988) https://doi.org/10.1021/ma00183a025
  25. T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci. Phys., 19, 1687 (1981) https://doi.org/10.1002/pol.1981.180191103
  26. P. Dimitrova, K. A. Friedrich, U. Stimming, and B. Vogt, Solid State Ionics, 150, 115 (2002) https://doi.org/10.1016/S0167-2738(02)00267-9