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Abstract: Several equations of state for hard-sphere chains with various perturbation terms are reviewed. For each
model, three characteristic parameters are required to represent phase equilibria of normal fluids and obtained from
thermodynamic properties of pure saturated liquids. The models are then compared with computer simulation data
to show the effect of attractive contribution forms employed. Calculated values of vapor-liquid equilibria (VLE) of
hydrocarbons that can be reproduced for each model are also compared with experimental results. An additional
parameter, (y;, is required to represent the VLE of pure water, which is ascertained to have a strong influence on the

theoretical coexistence curve.
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Introduction

Equation of state serves as a very efficient tool to describe
properties of various kinds of fluids. In recent years, there
have been increasing intetests in developing equations of
state that can describe properties of molecular fluids more
accurately and the application of equation of state for the
calculation of phase equilibria has been the subject of
numerous studies.'” Especially for polyatomic molecules,
however, it is very difficult to establish a statistical-mechanical
model because of their several distinctions from normal flu-
ids such as asymmetric structure, large number of internal
degrees of freedom, and strong coupling between intra- and
intermolecular interactions.* Among several categories of
equation of state, the hard-sphere equation of state is adapted
as a very useful reference system to represent numerous types
of molecular fluids despite of its simplicity. Further, the hard-
sphere system has another merit that it can be extended
directly to the hard-sphere-chain system by introducing chain
connectivity term, which is used in most existing equations of
state for chain-like molecules. A hard-sphere-chain equation
of state takes into account some significant features of real
fluids including polymers. Based on these approaches, a lot
of perturbation theories have been proposed.

To explain the interactions between real fluids, the free
energy is expanded in a power series in reciprocal tempera-
ture. The first and second-order perturbation terms can be
generally calculated using perturbation theory, e.g., Barker-
Henderson theory.’ Depending on the number of perturbation
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terms considered, first-order perturbation theories,® second-
order perturbation theories,”” and fourth-order perturbation
theories'®"" were independently developed. Another simple
approach is using a van der Waals perturbation term con-
taining temperature-dependent attractive parameter, a(7). It
can be related to the second virial coefficient B(T) and there-
fore can be determined from the knowledge of intermolecular
potential,'>"* or can be employed simply using empirical
temperature dependent functions obtained by fitting the
experimental data for several simple fluids such as argon
and methane.'*'¢

It has been apprehended that the formation of hard-sphere
chain reduces the number of intermolecular interactions when
compared to a system of spherical molecules only, which is
caused by the shielding of chain segments by other segments
of the same chain. This phenomenon is considered to be
dependent both on the chain length and the system density.
Recently, a number of studies have been reported that account
for the connectivity of the segments in the perturbation term.
Most of the models are developed in analytical form and
shows high accuracy, however, the obtained expressions are
too lengthy and difficult to handle.”'"*°

In this study, we developed three hard-sphere-chain equa-
tions of state based on the well-known Carnahan-Starling
hard-sphere equation” differing in the perturbation terms,
that have more simplified form than those of the models
mentioned above. Each model is directly extended from the
Carnahan-Starling equation by introducing a bonding term
which accounts for the chain connectivity. We then compared
each model with computer simulation data and experimental
vapor-liquid equilibrium data of pure saturated fluids.
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Model Descriptions

Reference Terms. The equation of state for hard spheres
and hard-sphere chains generally consists of two contributions

ZZZref+ Zpert (1)

In this study, we employ the well-known Carnahan-Starling
(C-S) equation of state’” as the reference equation for hard
spheres.

3
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where 77 1s defined as the packing fraction or reduced den-
sity which can be expressed as

3
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o is the hard-sphere diameter and p=N/V is the number
density.

For hard-sphere chains, the hard-sphere equation can be
directly extended to the hard-sphere chains by introducing
appropriate chain connectivity term. In recent publications,
two different types of bonding terms are found and adapted
for this study.

Z"" = (1-r)[gd")-1] )
Zghain _ (1 _r)pﬂnag'(od ) (5)

where g(d") is the pair radial distribution function for hard
sphere chains at contact:

g(d") =107 ©)
(I-m

Ang(d’) _ _n(5-27)
ap Q2-m-n

Above two equations were compared using the same
hard-sphere reference equation.” Results show that using
eq. (5) describes the computer simulation data for the com-
pressibility factor with higher accuracy than eq. (4), espe-
cially for longer chains. Therefore, we employ eq. (5) to
generate the equations for the hard-sphere chains from C-S
equation by the following relationship proposed by Kim and
Bae.®

()

ZHSC= 1 +I"(ZCS— 1 ) +Zchain (8)
where Z stands for the reference equation representing
the compressibility factor for hard sphere chains, Z#“" is the
bonding term which accounts for chain connectivity, and Z&
represents the C-S hard-sphere equation of state.

The final expression for the reference equation hard-sphere
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chain has the form of

l+p+y-n Jn
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Perturbation Terms.

Simplest Type of van der Waals Attractive Term: In
1873, van der Waals proposed the well-known equation of
state for normal fluids®

Pv v a

v _ 2 (10)

where P is the pressure, 7 is the absolute temperature, v is
the molar volume, and R is the universal gas constant. In the
right-hand side of the above equation, the second term re-
presents the attractive forces between two molecules that is
inherited from parameter a. Song et al. adapted this pertur-
bation term and proposed the perturbed hard-sphere-chain
(PHSC) equation of state to describe the phase equilibrium

properties of fluids including chain-like molecules.'*'®
2
=_rap
Zpert iT (1 1)

The PHSC theory has three characteristic parameters; r is
the number of segments (effective hard spheres) per molecule,
o is the separation distance between segment centers, and &
is the segment-pair interaction energy. For hard spheres (r=
1), eq. (10) reduces to the van der Waals attractive term in
eq. (9). In eq. (10), parameter a which reflects the attractive
forces between two non-bonded segments, is temperature-
dependent function given by

a(T) = 23—”035FC,(1(T/5) (12)

where
F(kT/g) = 1.8681exp[-0.0619(kT/¢)]

s (13)
+0.6715exp[-1.7317(kT/&)""]

Perturbation Term Proposed by Bokis ef al.: The PHSC
equation proposed by Song e al. describes various kinds of
thermodynamic properties of fluids and fluid mixtures con-
taining polymeric liquids as well. However, the PHSC
equation of state is poor in representing the attractive contri-
butions because it employed the simplest type of van der
Waals attractive form as the perturbation term. Bokis ef al.
pointed out this shortcoming that frequently occurs in most
of existing equations of state.® Simultaneously, they sug-
gested a simple expression for the perturbation term by
directly correlating the Monte Carlo simulation data.

Zper! = (qa+qb ﬂ)leyert (14)

where Z;,er, is the attractive contribution to the compress-
ibility factor for a spherical molecule (monomer). In this
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study, Z;,e,, is obtained from eq. (10) by setting that r=1.
The final form of the perturbation term for the HSC is then
given by
a
Zper! = _(qa+Qb77);§—v (15)
g, and g, are constants for each chain and vary approxi-
mately linearly with chain length according to

.= 0.856+0.144r (162)

g, =2.54(r-1) (16b)

Square-Well Based Equation for the Attractive Term:
In 1998, Sadowski developed a new equation of state for
hard-sphere chains that accounts for the chain connectivity
in the reference term as well as in the attractive term.”” On
the other hand, the model developed by Bokis ef al. is purely
empirical and parameters do not have physical meanings.
Sadowski derived an equation of state using a physically
meaningful expression while retaining a simplicity. For
spherical fluids (=1), the attractive contribution is described
using a simple mean-field expression

Z117ert = _tL]Z;):E (17)

The attraction parameters a(T) is related to the second virial
coefTicient B(T) and the van der Waals covolume b by

a(@) _

T b-B (18)
with B(T)=Q27/3)c" and B=(27/3)0y’ [ 1+ (A=D[1-exp
((ue’kDY(1+1/T)]].

In this model, the hard-sphere diameter o is considered as
a function of temperature following the Barker-Henderson
theory®:

o= oy[ 1 - Cexp(=3uy/kT)] (19)

with C=0.25.

For chain fluids, the compressibility factor of a chain fluid
in the attraction term is calculated from that of a spherical
fluid using the following relation

1
Zpert = Nr'erert (20)
where N, is the number of segment-segment interactions in
the chain system. For a system which consists of spherical
molecules only, N,,=N, can be calculated as below

_ o @n! _ B
Nyt = 2o = sy = rar=1) @

To estimate the number of interactions for the chain system,
the ratio of N,.,.=N,_, is approximated to be equal to the ratio
of the radial distribution function:

22)

The value g,(c”) for the system of hard-spheres can be
obtained from the Percus-Yevick equation'

o 2+
LG v 23)

For hard-sphere chains, Chiew developed an analytical
expression for the radial distribution function®':

glo"y =22 Br=21 4)
2r(1—1n)

Eq. (24) reduces to eq. (23) for the hard-sphere system
(r=1).

Using eq. (21) through eq. (24), a number of interactions
in the chain system are now determined as:

N, = 2o oy A (25)

‘pert

Eq. (25) represents that N, , depends on both the segment
number and the system density.

For comparison, complete equations of state with three
different perturbation terms are given in Table I.

Thermodynamic Functions.

Helmholtz Energy: The general equation for calculating
the Helmholtz energy from a pressure-explicit equation of
state is

Table I. The Proposed Equations of State for Hard Sphere Chains and Their Expressions

Equation Expression
l+n+1 -1 Ang +a :
Song’s Model Z=1 +r(—('ll——77)T'L— 1) +(1 —r);o—ﬁzg ——k—Te (26
/]
2 3
Bokis’ Model Z= 1+ T =T 4) (1) p 2B (g, +g,m)22 @7
(1-1) » kT
2 3
Sadowski’s Model z=1 +r(1—+m— 1) +(1=r)p2R8_ (o, )2 Cr=2)na(N)in 28)
(1-n)’ p 2+n kT rb
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A(T,V,N,) = iA?(n+ f:( —N];J)dV

+ kBTZN In (Nk‘” T)

By introducing eq. (26) into eq. (29), one can obtain the
following equation:

(29)

o2 (-Dortulpst) o

In a similar way, the Helmholtz energy for the eqs.(27)
and (28) can also be calculated as follows

A 4-3
mr’é_—mﬂ) (1—-)[31n(1— m—In(2-7)+In2]

4(”) 21(0.856+0.144r) n+1.27(r— 1) 17’]

€Dy
1 (1
+= =
rln rp,kT)
and
A4 _ _( AP (l
NAT 4w 1 r)Q+r1n rprkT)
(32)
N\ a
(2- )(kT)[ )[6(1 r)lnL(3r 2)@
where
- @=37) (33)
4(1-ny’
= In—2=1_ (34)
2(1=m)
Chemical Potential: The chemical potential is given by
OA
=\ (3%)
* (O’yvk ) T, V,Niui
or
M Of A4
kT ro"n(nN,kT)T’V’N“k (36)

By differentiating eqs. (30) through (32) with respect to
the number of molecules in the system, the expressions for
the chemical potential for each model can be obtained:

Y _ g i+ 47?2 (r=1)0—(r— 1);7-5—Q
kT an
8r 4KT
b(kT)an( b ’7)“

Macromol. Res.. Vol. 14, No. 2. 2006

@37

Ay _ oM oN

kBT M+r77 +(r DN+ (r- 1)770,, o)
_é(ﬁ 5( X
p kT)F,, X ”aﬁ“n”

o —8r77W+4r;75—W (r-1)0—(r— 1)772%

+in(Eln)-er- ()3 )[sa-nniz2 39)

_ a1
+2(3r=2)n+6(1 r)”+2}+1

where
- 14=31) (40)
(1-n)’
3
- 2= @1
2-7n
X=(0.856+0.144r) p+1.27(r- 1) 7’ (42)

Fugacity Coefficient: The condition for the vapor-liquid
equilibria of pure fluids is given by

Ml = al (43)

r=r (44)
where fis the fugacity and superscripts ¥ and L refer to the
vapor phase and the liquid phase, respectively.

For a pure component, the fugacity coefficient ¢ can be
obtained from the following relationship:

|

np= | [ — V}dV— InZ+(Z-1) 45)

Substituting eqs. (26)-(28) into eq. (45) yields

ng= r[(illz—’)lz—3]+(r— DI31n(1=7)—In(2 7)+1n2
—7

_4r

- (kr)” InZ,+2,—1 (46)

Ing = rM+(r—1)N—- (ﬁ)IiX IN(Z)+Z,—1  (47)

Ing =4rnW—(r-1)0-InZ;+(Z;-1)
~(2r- 1)(1%)(%){6(1 —r)lnﬂ;—2+(3r-z)ﬂ @)

where Z,, Z,, and Z; correspond to eqgs. (26), (27), and (28),
respectively.
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Results and Discussion

Compressibility Factor. The models employed in this
work have three characteristic parameters: the number of
single hard spheres per chain molecule r, the segment size &
or gy, and the non-bonded segment pair interaction energy &
or u.

In Figure 1, Monte Carlo simulation data® for the com-
pressibility factor for a spherical molecule are given together
with the predicted compressibility factor by the C-S equation.
As shown in Figure 1, the calculated values show remarkably
good agreement with the simulation data in the entire density
region.

Figure 2 represents a comparison of the compressibility
factor from Molecular Dynamics data® for pure fluid r=16
with the prediction by eq. (9). In the descriptions of the
computer simulation data, the proposed model slightly
overestimates the pressure in the higher density region.

Figure 3 compares Monte Carlo simulation data® for the
compressibility factor of binary hard-sphere chain mixture
with the values calculated by eq. (9) (o1/0>=4/1; r\/r,=1/16;
x;=0.2). It is apparent from the figure that the proposed
model describes the simulation data with high accuracy.

Attractive Contribution to the Compressibility Factor.
We investigate the attractive contributions to the compress-
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Figure 1. Monte Carlo simulation data for the system of spherical
molecule (r=1) which represents the compressibility factor. The
solid line is calculated by the C-S equation. The open squares are
simulation data reported by Barker and Henderson.™
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Figure 2. Molecular Dynamics data for the system of which
effective chain length is 16 which represents the compressibility
factor. The solid line is calculated by eq. (9). The open circles are
dynamics data reported by Gao and Weiner.*
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Figure 3. Monte Carlo simulation data for the system of mixture
of hard sphere chains with x,=0.2, r/r,=1/16, and o,/0,=4/1
which represent the compressibility factor. The solid line is cal-
culated by eq.(9). The open up-triangles are simulation data
reported by Dickman and Hall.**
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ibility factor separately to illustrate the effect of perturbation
terms on the overall equation of state. Each contribution is
compared with the computer simulation data. The results
are shown in Figure 4. This figure represents the ratio of
attractive compressibility factor of 4-mer to that of spherical
molecule versus the reduced density. The symbols are com-
puter simulation data reproted by Yethiraj and Hall.” The
lines are predictions from each model as denoted in the figure.
In Figure 4, eq. (11) reflects no density dependence, keeping
the value of Z;e,, /! (42;2,,) to be a unity where Z,,,, represents
a contribution of the perturbation term to the compressibility
factor of a chain composed of » hard spheres, while the values
me, /(4le,e,,) of calculated from egs. (15) and (25) increase
with density. However, eq. (15) is derived by directly fitting
the molecular simulation data with physically insignificant
parameters and also the calculated values of Zze,,/ (4Z,1,L,,,)
increase linearly with the hard-sphere density. Eq. (28) is
obtained by assuming that the ratio of the number of seg-
ment-segment interactions in the chain system is equal to the
ratio of the radial distribution function. As shown in Figure
4, Z?,e,,/ (42;2,,) calculated from eq. (28) fairly agrees with
the simulation data without any fitting parameters, and these
values increase with the system density.

Vapor-Liquid Equilibria of Normal Hydrocarbons. To
describe the vapor-liquid equilibria of pure fluids, three tem-

1.6 T T T T T T
v Monte Carlo simulation data [7]
1.4 .
4 - —=Eq.(11)
{ ---EqU9

att att
7,42,

0.2

0.0 0.1 0.2 0.3 0.4 0.5

n

Figure 4. Ratio of the attractive compressibility factor of 4-mer to
that of monomer versus the reduced density. The lines are calcu-
lated by each model as denoted in the figure. The open down-
trianlges are Monte Carlo simulation data by Yethiraj and Hall.”
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perature-dependent characteristic parameters (r, o, & are
required that are obtained appropriately for each model. Those
are determined by fitting experimental properties of the pure
saturated liquid such as a vapor pressure and a density as a
function of temperature. Values for these characteristic para-
meters of some pure volatile fluids for each model are listed
in Tables II-IV.

In Figure 5, presented models are compared with experi-
mental vapor-liquid equilibrium data for saturated pure

Table II. Lists of Characteristic Parameters for the Song’s
Equation of State

Fluids ¥ o (A) &k (T)
Methane 1 4.073 174.7
Ethane 1.757 3.748 204.5
Propane 2.142 3.810 2234
Butane 2977 3.583 2117
Hexane 4.782 3.332 197.9
Isobutane 3.102 3.456 196.4
Cyclohexane 3.689 3.434 248.5
Ethene 1.625 3.709 198.5
Propene 2.173 3.689 217.6
cis-1-Butene 3.148 3.452 210.6
Benzene 3.558 3.197 263.1
o0-Xylene 4.461 3.369 283.0
Acetone 3.578 3.006 245.1
Methyl Chloride 2.388 3.121 247.6

Table III. Lists of Characteristic Parameters for The Bokis’
Equation of State

Fluids r s (A) &k (T)
Methane 1.198 4.078 133.8
Ethane 1.624 3.996 262.1
Propane 2.363 3.819 446.3
Butane 2.351 4.121 511.8
Hexane 3.582 3.924 933.4
Isobutane 2.583 3.981 536.5
Cyclohexane 3.356 3.820 947.6
Ethene 1.576 3.950 242.6
Propene 2.154 3.852 404.2
cis-1-Butene 2.813 3.714 624.4
Benzene 3.029 3.723 865.0
0-Xylene 3.695 3.848 1195.4
Acetone 2.894 3.519 747.9
Methyl Chloride 2.475 3.282 523.8
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Table IV. Lists of Characteristic Parameters for the Sad-
owski’s Equation of State

Fluids riM oo (A) up/k (T)
Methane 0.06814 4.024 28.152
Ethane 0.05228 4.108 35.893
Propane 0.04386 4.289 39.511
Butane 0.03884 4.421 42.965
Hexane 0.03366 4.587 48.092
Isobutane 0.03738 4.502 40.382
Cyclohexane 0.03212 4415 50.637
Ethene 0.04985 4.204 41.495
Propene 0.03902 4.339 41.039
cis-1-Butene 0.03710 4.201 45210
Benzene 0.03409 4.167 51.323
o-Xylene 0.03098 4.343 54.390
Acetone 0.03249 4.736 59.203
Methyl Chloride 0.06230 4.329 33.405

methane.”® As shown in this figure, each model is in good
agreement with the data, however, the Bokis” model slightly
deviates from the experimental data near the critical point.

200 T T T T T T Y
J /
/
1804 ! 7 1
!
1 |
|
- 1604 i -
X
~ }
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=
N
® 140 f -
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g 1 P H Experimental data [35] 1
@ 1 . .
= 120 4 -~ Song's equation i
~ = Bokis' equation
1 T Sadowski's equation
100 4 + -
i n
80 T T T v T v T v T v
0.0 0.1 0.2 0.3 0.4 0.5
- 3
Density(g/cm”)

Figure 5. Vapor-liquid equilibrium experimental data for saturated
methane. The lines are calculated by each model as denoted in the
figure. The solid squares are experimental data reported by Smith
and Srivastava.*
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The Song’s and Sadowski’s models show almost identical
results.

Figures 6 and 7 show results of comparisons of each model
with experimental vapor-liquid equilibrium data for propane
and hexane.”® Each model shows similar results to those given
in Figure 5. The Bokis’ model again shows slight deviations
near the critical point in low-density region. The Song’s
equation also slightly deviates from experimental data and
deviations become greater with the molecular weight or the
molecular size of the fluids. The Sadowski’s model shows
similar tendencies to the Song’s model, however, best des-
cribes vapor-liquid equilibria of pure fluids among presented
models.

Vapor-Liquid Equilibria of Water. In Figure 8, we present
results of comparisons of calculated values from each model
with the experimental data of vapor-liquid equilibria of pure
water. As shown in the figure, each model shows severe
deviations from the experimental data.

In Sadowski’s model, eq. (22) was obtained by a rough app-
roximation. We reconsider Sadowski’s equation by proposing
the following relationship:

N,, gl(c)
Sy 819 ) (49)
N gy(oh)

The equality only can be granted by introducing another

320
300 S
280

260

Temperature(K)

£

1 @ Experimental data [35]
240 , .
- = = Song's equation

] — - Bokis' equation
220 S

====>Sadowski's equation

200 -

00 041 02 03 04 05 06 07

Den sity(g/cms)

Figure 6. Vapor-liquid equilibrium experimental data for saturated
propane. The lines are calculated by each model as denoted in the
figure. The solid circles are experimental data reported by Smith
and Srivastava.”®
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Figure 7. Vapor-liquid equilibrium experimental data for saturated
hexane. The lines are calculated by each model as denoted in the
figure. The solid circles are experimental data reported by Smith

and Srivastava.”®

characteristic parameter, (i, which scales the non-ideal
behavior of water from normal hydrocarbons. The new
expression has the form of

Nr—r r O-+
N, = KBg( +) (50)
-1 gi(o)

The value of ¢, for pure water is empirically obtained as
0.97. Three characteristic parameters are r=1.6891, =2.833,
and 1#,=62.087. In Figure 9, experimental vapor-liquid equi-
libria of saturated pure water are compared with theoretical
prediction from the modified Sadowski’s model. The coex-
istence curve calculated from the original Sadowski’s model
with same characteristic parameters is also given for com-
parison. The result manifests that ¢, strongly influences on
the phase diagram of vapor-liquid equilibria for water when
the identical characteristic parameters are used. The improved
model shows remarkably good agreement with the experi-
mental data.

Liquid-Liquid Equilibria of Polymer Solutions. Figure
10 shows cloud point data for binary polystyrene (PS)/acetone
system which shows a upper critical solution temperature
(UCST) behavior. The open squares are the experimental data
reported by Zeman et al.”® and the solid line is calculated
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. - )
650 i
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M 5504 o o
T In} ]
=
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-
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4004 - - « Bokis' equation 7
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(1=1.6701, 6=2.828, u,=59.361)
300 L A R SR L
0.0 0.2 0.4 0.6 0.8 1.0
Density(g/cm?)

Figure 8. Vapor-liquid equilibrium experimental data for saturated
water. The lines are calculated by each model as denoted in the
figure. The open squares are experimental data reported by Smith
and Srivastava.*
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Figure 9. Vapor-liquid equilibrium experimental data for saturated
water. The lines are calculated by Sadowski’s model with differ-
ent values of {y; as denoted in the figure. The open circles are
experimental data reported by Smith and Srivastava.®
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Figure 10. Liquid/liquid equilibria for polystyrene/acetone. The
solid line is calculated by the proposed model. The open squares
are experimental data by Zeman et al.*

coexistence curve by the proposed model. The values of three
characteristic parameters for polystyrene are »/M=0.01203
(mol/g), 6=5.563A, and &/k=726.8. The binary model
parameters have the value of £,=0.2106 and 4,,=0.1865.
From the values of binary model parameters, we can infer
that the PHSC equation-of-state theory overestimates &,
and o, by about 21 and 19%, respectively. The calculated
coexistence curve shows a slightly narrow values compared
with the experimental data. It still predicts the critical point
remarkably well.

Figure 11 represents a cloud point curve of the PS/diethyl
ether system which shows a UCST behavior. The open cir-
cles are the experimental data reported by Zeman et al."
and the solid line is the calculated coexistence curve by the
proposed model. Binary model parameter values for our
proposed model are &,,=0.1845 and 1,,=0.1558. The PHSC
equation-of-state theory overestimates the energy and size
parameters about 18 and 16%, respectively. The proposed
model slightly overestimates the experimental critical point
and shows a slight deviation from the experimental data in
the higher polymer composition region.

Conclusions

Three different types of perturbation terms are adapted to
the well-known Carnahan-Starling (C-S) hard-sphere equa-
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Figure 11. Liquid/liquid equilibria for polystyrene/diethyl ether.
The solid line is calculated by the proposed model. The open cir-
cles are experimental data by Zeman et al.**

tion of state to calculate thermodynamic properties of various
molecular fluids. To extend each model to hard-sphere chains,
a bonding term that represents the chain connectivity is
required. Three characteristic parameters for each model are
determined from experimental data of pure fluids. In compar-
ison with computer simulation data, Bokis’ and Sadowski’s
models show attractive contributions to the compressibility
factor fairly well, however, the Song’s model cannot repre-
sent density dependence of the ratio of attractive compress-
ibility factor of hard-sphere chain to that of spherical mole-
cule when plotted versus the reduced density. Vapor-liquid
equilibria of saturated pure fluids is reproducible using three
characteristic parameters without any additional adjustable
parameters with high accuracy. The Sadowski’s model best
describes experimental vapor-liquid equilibria of pure hydro-
carbons, while the Bokis’ model shows deviations in low-
density region. To describe vapor-liquid equilibria of saturated
pure water that shows a unique behavior, an additional scaling
parameter, £z is introduced into the Sadowski’s model. The
improved equation describes the vapor-liquid equilibria of
water remarkably well while the original model shows a large
deviation from the experimental data. Using characteristic
parameters obtained from pure substances, the LLE of the
given polymer/solvents systems were predicted. Calculated
coexistence curves show good agreements with the experi-
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mental data. The proposed model can explain the non-ideal
behaviors of polymer solutions by performing a simple
modification on the PHSC equation of state.
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