DOI QR코드

DOI QR Code

실린더형 압전소자 광지연선을 이용한 광 간섭형 단층촬영(OCT) 시스템 제작

Fabrication of an On System based on an Optical Delay line with Cylindrical PZT

  • 박성진 (경희대학교 전자정보대학 레이저공학연구소) ;
  • 김영관 (경희대학교 전자정보대학 레이저공학연구소) ;
  • 김용평 (경희대학교 전자정보대학 레이저공학연구소)
  • Park, Sung-Jin (College of Electronics and Information/Institute for Laser Engineering, Kyunghee University) ;
  • Kim, Young-Kwan (College of Electronics and Information/Institute for Laser Engineering, Kyunghee University) ;
  • Kim, Yong-Pyung (College of Electronics and Information/Institute for Laser Engineering, Kyunghee University)
  • 발행 : 2006.04.01

초록

원통형의 압접소자를 이용한 광지연선을 사용하여 광 간섭형 단층촬영 시스템을 제작하였다. 광지연선은 18 m 길이의 단일 모드 광섬유를 압전소자의 둘레에 134회 감아 구성하였으며 0.78 mm의 광경로 길이변화를 얻었다. 제작한 광 간섭형 단층촬영 시스템은 신호 대 잡음비 96.9 dB, 종방향 분해능 $18.6{\pm}0.5\;{\mu}m$, 횡방향 분해능 $5\;{\mu}m$의 특성을 보였다.

We demonstrate a compact optical coherence tomography(OCT) system based on the optical fiber delay line controlled by a cylindrical piezo-electric transducer(PZT). An 18-m length of single mode fiber is wrapped under constant tension around a PZT. Approximately 134 windings are used. Wraps of the long length of fiber allow the small expansion of the PZT to be magnified to an optical path length delay of 0.78 m. The OCT system shows characteristics for 2-dimensional imaging, exhibiting 96.9dB of signal-to-noise ratio(SNR), $18.6{\pm}0.5\;{\mu}m$ of axial resolution, and $5\;{\mu}m$ of lateral resolution with samples.

키워드

참고문헌

  1. David Huang, James G. Fujimoto, 'Optical coherence tomography,' Science 254, pp. 1178-1181, 1991 https://doi.org/10.1126/science.1957169
  2. James G. Fujimoto, 'Optical biopsy and imaging optical coherence tomography,' Nature Medicine, 1, pp. 970-972, 1995 https://doi.org/10.1038/nm0995-970
  3. Robert C. Youngquist, Sally Carr, and D. D. N. Davies, 'Optical coherence domain reflectometry: A new optical evaluation technique,' Opt. Lett., vol. 12, no. 3, pp. 158-160, 1987 https://doi.org/10.1364/OL.12.000158
  4. Joseph M. Schmitt, 'Optical coherence tomography (OCT): a review,' IEEE J. Select. Topics Quantum Electron., vol. 5, no. 4, pp. 1205-1215, 1999 https://doi.org/10.1109/2944.796348
  5. Adrian Gh, Podoleanu, 'Three dimensional OCT images from retina and skin,' Opt. Express, vol. 7, no. 9, pp. 292-298, 2000 https://doi.org/10.1364/OE.7.000292
  6. Christoph K. Hitzenberger, 'Three-dimensional imaging of the human retina by high-speed optical coherence tomography,' Optics Express, vol. 11, no. 21, pp. 2573-2761, 2003
  7. R. Walti, 'Rapid and precise in vivo measurement of human corneal thickness with optical low-coherence reflectometry in normal human eyes. J. Biomed. Opt. vol. 3, no. 3, pp. 253-258, 1998 https://doi.org/10.1117/1.429880
  8. Brett E. Bouma and Guillermo J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker Inc., New York, USA, 2002), pp. 385-443, 2002
  9. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John wiley & Sons Inc., New York, USA, 1991), pp. 65-66
  10. K. K. M. Buddhika Dilusha Silva, Optical Coherence Tomography: Technology Enhancements and Novel Applications (Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2003), p. 24
  11. John P. Powers, An Introduction to Fiber Optics Systems (Aksen Associates, Inc., Boston, USA, 1993), p. 193