DOI QR코드

DOI QR Code

Fabrication of α-Alumina Nanopowders by Thermal Decomposition of Ammonium Aluminum Carbonate Hydroxide (AACH)

암모늄 알루미늄 탄산염(hhCH)의 열분해에 의한 α-알루미나 나노분말 제조

  • O, Yong-Taeg (Department of Advanced Materials Engineering, Chosun University) ;
  • Shin, Dong-Chan (Department of Advanced Materials Engineering, Chosun University) ;
  • Kim, Sang-Woo (Nano-Materials Research Center, Korea Institute of Science and Technology)
  • 오용택 (조선대학교 신소재공학과) ;
  • 신동찬 (조선대학교 신소재공학과) ;
  • 김상우 (KIST 재료연구부 나노재료연구센터)
  • Published : 2006.04.01

Abstract

[ ${\alpha}-Al_2O_3$ ] nanopowders were fabricated by the thermal decomposition and synthetic of Ammonium Aluminum Carbonate Hydroxide (AACH). Crystallite size of 5 to 8 nm were fabricated when reaction temperature of AACH was low, $8^{\circ}C$, and the highest $[NH_4{^+}][AlO(OH)_n{(SO_4){^-}}_{3-n/2}][HCO_3]$ ionic concentration to pH of the Ammonium Hydrogen Carbonate (AHC) aqueous solution was 10. The phase transformation fem $NH_4Al(SO_4)_2$, rhombohedral $(Al_2(SO_4)_3)$, amorphous-, ${\theta}-,\;{\alpha}-Al_2O_3$ was examined at each temperature according to the AACH. A Time-Temperature-Transformation (TTT) diagram for thermal decomposition in air was determined. Homogeneous, spherical nanopowders with a particle size of 70 nm were obtained by firing the 5 to 8 m crystallites, which had been synthesized from AACH at pH 10 and $8^{\circ}C,\;at\;1150^{\circ}C$ for 3 h in air.

Keywords

References

  1. Y. T. O, J. B. Koo, K. J. Hong, J. S. Park, and D. C. Shin, 'Effect of Grain Size on Transmittance and Mechanical Strength of Sintered Almina,' Mater. Sci. and Eng. A, 374 191-95 (2004) https://doi.org/10.1016/j.msea.2004.02.015
  2. A. M. Maczura, K. P. Goodboy, and J. J. Koening, 'Aluminum Oxide (Aluminum),' in: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Edition, Wiley, New York, 218, 1984
  3. K. Kubo, G. Jinpo, E. Mizuwzteri, H. Takahashi, and S. Hayakawa, 'Powders-Theories and Application,' Maruzen, 2 37 (1979)
  4. C. C. Ma, X. X. Zhou, X. Xu, and T. Zhu, 'Synyhesis and Thermal Decomposition of Ammonium Aluminum Carbonate Hydroxide (AACH),' Mat. Chem. and Phys., 72 374-79 (2001) https://doi.org/10.1016/S0254-0584(01)00313-3
  5. Z. Li, X. Feng, H. Yao, and X. Guo, 'Ultrafine Alumina Powders Derived from Ammonium Aluminum Carbonate Hydroxide,' J. Mater. Sci., 39 2267-69 (2004) https://doi.org/10.1023/B:JMSC.0000017804.38298.92
  6. K. Hayashi, S. Toyoda, K. Nakashima, and K. Morinaga, 'Optimum Synthetic Condition of Ammonium Aluminum Carbonate Hydroxide (AACH) as Starting Material for Fine $\alpha$-Alumina Powders,' J. Ceram. Soc. Jpn. Int. Edition, 98 29-34 (1990) https://doi.org/10.2109/jcersj.98.29
  7. S. Fujino, T. Torikai, Y. Miyake, and K. Morinaga, 'Preparation of Nano Sized $\alpha$-Alumina Powders by Thermal Decomposition of Ammonium Alumium Carbonate Hydroxide (AACH),' 18th International Japan-Korea Seminar on Ceramics, pp. 305-09, 2001
  8. K. Morinaga, T. Torikai, K. Nakagawa, and S. Fujino, 'Fabrication of Fine $\alpha$-Alumina Powders by Thermal Decomposition of Ammonium Aluminum Carbonate Hydroxide (AACH),' Acta Materialia, 48 4735-41 (2000) https://doi.org/10.1016/S1359-6454(00)00265-2
  9. X. D. Sun, J.-G. Li, F. Zhang, X. Qin, Z. Xiu, H. Ru, and J. You, 'Synthesis of Nanocrystalline $\alpha$-Al2O3 Powders from Nonometric Ammonium Aluminum Carbonate Hydroxide,' J. Am. Ceram. Soc., 86 1321-25 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03469.x
  10. T. Torikai, K. Nakagawa, and K. Morinaga, 'Effects of Firing Ammonium Aluminum Carbonate Hydroxide (AACH) under Various Atmosphere Conditions on Particle Size of $\alpha$-Alumina,' Eng. Sci. Report Archive, 22 1-6 (2000)
  11. S. Kato, T. Iga, S. Hatano, and Y. Izawa, 'Effect of Synthtic Conditions of $NH_4Al(OH)_2CO_3$ on Sinterability of Alumina by Thermal Decomposition,' Yogyo-Kyokai Shi, 84 255-58 (1976) https://doi.org/10.2109/jcersj1950.84.970_255