DOI QR코드

DOI QR Code

Dielectric Properties of Ti-doped K(Ta,Nb)O3 Thin Films for Tunable Microwave Applications

  • Bae Hyung-Jin (Material Science and Engineering, University of Florida) ;
  • Koo Jayl (Inha technical college) ;
  • Hong Jun-Pyo (Dept. of Electronics Engineering, Inha University)
  • 발행 : 2006.03.01

초록

Ferroelectric materials have been widely investigated for high density dynamic random access memories, opto-electrics, and tunable microwave devices due to their properties. In this study, we have investigated the dielectric properties of Ti doped $K(Ta,\;Nb)O_3$ thin films. By doping Ti Into the $K(Ta,Nb)O_3$ system, Ti with a valence value of +4 will substitute Ta or Nb ions with a valence value of +5. This substitution will introduce an acceptor state. Therefore, this introduced acceptor state will reduce dielectric loss by trapping electrons. Using 3% Ti-doped $K(Ta,Nb)O_3\;targets,\;K(Ta,Nb)O_3$:Ti films were grown in MgO(001) crystals using pulsed laser deposition. First, growth conditions were optimized. A reduction in the loss tangent was observed for Ti-doped $K(Ta,Nb)O_3$ relative to undoped films, although a reduction in tunability is also seen. The crystallinity, morphology, and tunability of $K(Ta,Nb)O_3$:Ti films are reported.

키워드

참고문헌

  1. J.F. Scott, Ferroelectr. Rev. 1. 1 (1998); S.R. Summerfelt, in Ferroelectric Thin Films, edited by R. Ramesh (Kluwer Academic, Netherlands, 1997), Chap. 1, pp. 1
  2. J. Im, O. Auciello, P.K. Baumann, S.K. Streiffer, D.Y. Kaufmann, and A.R. Krauss, Appl. Phys. Lett. 76, 625 (2000) https://doi.org/10.1063/1.125839
  3. Y. Gim, T. Hudson, Y. Fan, C. Kwon, A.T. Findikoglu, B.J. Gibbons, B.H. Park, and Q.X. Jia, Appl. Phys. Lett. 77, 1200 (2000) https://doi.org/10.1063/1.1289272
  4. P. Padmini, T.R. Taylor, M.J. Lefevre, A.S. Nagra, R.A. York, and J.S. Speck, Appl. Phys. Lett. 75, 3186 (1999) https://doi.org/10.1063/1.125272
  5. Ikufumi Katayama, Masanobu Shirai, and Koichiro Tanaka, Journal of Luminescence, 102-103, pp. 5459 (2003)
  6. R.W. Babbitt, T.E. Koscica, and W.C. Drach, Microwave Journal, pp. 63, June (1992)
  7. L.C. Sengupta and S. Sengupta, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control 44, 792 (1997) https://doi.org/10.1109/58.655193
  8. G.V. Belokopytov, I.V. Ivanov, S.I. Katanov, N.N. Moiseev, and P.P. Syrnikov, Sov. Phys. Solid State 24(6) (1982)
  9. Adriaan C. Carter, James S. Horwitz, Douglas B. Chrisey, Jeffrey M. Pond, Steven W. Kirchoefer, and Wontae Chang, Integrated Ferroelectrics, Vol. 17, pp. 273-285, (1997) https://doi.org/10.1080/10584589708013002
  10. S. Triebwasser, Physical Review, Vol. 114 No. 1, pp. 63, (1959) https://doi.org/10.1103/PhysRev.114.63
  11. D. Rytz, A. Chatelain, and U.T. Hochli, Phys. Rev. B 27,6830, (1983) https://doi.org/10.1103/PhysRevB.27.6830
  12. M.D. Fontana, G. Metrat, J.L. Servoin, and F.Gervais, J. Phys. C: Solid State Phys., 16, pp. 483-514, (1984)
  13. J. Toulouse, X.M. Wang, and L.A. Boatner, Phys. Rev. B, Vol. 43, No. 10, pp. 8297, (1991) https://doi.org/10.1103/PhysRevB.43.8297
  14. P. Dubernet, J. Ravez, and A. Pigram, Phys. Stat. Sol. (a) 152, pp. 555, (1995) https://doi.org/10.1002/pssa.2211520224
  15. Hans-Martin Christen, D.P. Norton, L.A. Gea, and L.A. Boatner, Thin Solid Films, 312, pp.156-159, (1998) https://doi.org/10.1016/S0040-6090(97)00736-0
  16. S. Yilmaz, T.Venkatesan, and R. Gerhard-Multhaupt, Appl. Phys. Lett. 58, 2479, (1991) https://doi.org/10.1063/1.104849
  17. H.-M. Christen, L.A. Boatner, J.D. Budai, M.F. Chisholm, L.A. Gea, P.J. Marrero, and D.P. Norton, Appl. Phys. Lett. 68, 1488 (1996) https://doi.org/10.1063/1.116263
  18. H.-M. Christen, E.D. Specht, D.P. Norton, M.F. Chisholm, and L.A. Boatner, Appl. Phys. Lett. Vol. 72, No. 20, 2535, (1998) https://doi.org/10.1063/1.121411
  19. M. W. Cole, P. C. Joshi, and M. H. Ervin, J. Appl. Phys. 89, 6336 (2001) https://doi.org/10.1063/1.1366656
  20. M. Jain, S. B. Majumder, R. S. Katiyar, F. A. Miranda, and F. W. Van Keuls, Appl. Phys. Lett. 82, 1911 (2003) https://doi.org/10.1063/1.1560861
  21. H. S. Kim, M.H. Lim, H.G.Kim, and H.D. Kim, Electrochem. Solid State Lett. 7,11 (2004)
  22. G.A. Samara, L.A. Boatner, Physical Review B. Vol. 61, No. 6. pp. 3889, (1999) https://doi.org/10.1103/PhysRevB.61.3889
  23. Gabriel Bitton, Yuri Feldman, and Aharon J. Agranat, Journal of Non-Crystalline Solids, 305, 362-367, (2002) https://doi.org/10.1016/S0022-3093(02)01131-6
  24. R.K. Pattnaik, J. Toulouse, Journal of Physics and Chemistry of Solids, 61, 251-259, (2000) https://doi.org/10.1016/S0022-3697(99)00289-9

피인용 문헌

  1. The Electrical Characterization and Relaxation Behavior of Ag(Ta0.8Nb0.2)O3Ceramics vol.15, pp.2, 2014, https://doi.org/10.4313/TEEM.2014.15.2.100
  2. The microwave properties of Ag(Ta0.8Nb0.2)O3 thick film interdigital capacitors on alumina substrates vol.60, pp.2, 2012, https://doi.org/10.3938/jkps.60.276
  3. Electrical properties of lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Zr0.52Ti0.48)O3ceramics vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0904-2
  4. Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics vol.8, pp.1, 2012, https://doi.org/10.1007/s13391-011-1063-1
  5. Electrical and structural properties of 0.98(Na0.5K0.5)NbO3-0.02LiSbO3 ceramics with ZnO content vol.60, pp.7, 2012, https://doi.org/10.3938/jkps.60.1114
  6. Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095
  7. Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content vol.51, pp.7R, 2012, https://doi.org/10.7567/JJAP.51.075802
  8. Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1068-4
  9. Piezoelectric and dielectric properties of (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 ceramics with sintering temperature vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0905-1
  10. Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
  11. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
  12. Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Li0.04(Sb0.06Ta0.1)O3 ceramics vol.58, 2014, https://doi.org/10.1016/j.materresbull.2014.04.057
  13. Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
  14. Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5
  15. Effect of Sintering Temperature on the Structure and Piezoelectric Properties of Lead-Free 0.97K0.5Na0.5NbO3-0.03AlFeO3 Ceramics vol.602-603, pp.1662-9795, 2014, https://doi.org/10.4028/www.scientific.net/KEM.602-603.822
  16. Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature vol.7, pp.1, 2012, https://doi.org/10.1186/1556-276X-7-15