FDP 기반의 얼굴윤곽 정보를 이용한 2차원 얼굴영상 복원기법

Two-Dimensional Face Recovery Algorithm Using Face Outline Information Based on the FDP

조남철, 이기동
영남대학교 컴퓨터공학과
Nam-Chul Cho(namchul@yumail.ac.kr), Ki-Dong Lee(kdrhee@yu.ac.kr)

Abstract

Nowadays, CCTV can be come across easily in public institutions, banks, and etc. These CCTV play very important roles for preventing many kinds of crimes and resolving those crime affairs. But in the case of recording image of a specific person far from the CCTV, the original image needs to be enlarged and recovered in order to identify the person more obviously. Interpolation is usually used for the enlargement and recovery of the image in this case. However, it has a certain limitation. As the magnification of enlargement is getting bigger, the quality of the original image can be worse. This paper uses FDP(Facial Definition Parameter) proposed by the MPEG-4 SNHC FBA group and introduces a new algorithm that uses face outline information of the original image based on the FDP, which makes it possible to recover better than the known methods until now.

keyword : Interpolation | MPEG-4 | FDP(Facial Definition Parameter)
I. 서론

오늘날 공공기관이나 은행 등 각종 범죄 예방 및 보안을 요하는 곳에서는 손쉽게 CCTV와 같은 감시용 카메라를 발견할 수 있다. CCTV의 활용은 보안 감시용, 산업용, 차량의 화상감시용, 교통관리용 등으로 아주 다양하다. 특히 보안 감시용으로 각종 범죄를 예방하고 범죄 사건을 해결하는데 중요하다고 단서를 제공해 주기도 한다. 이런 중요한 역할을 하고 있는 감시용 카메라에서도 사각한 문제점을 가지고 있다. 특히 멀리 떨어져 있는 사람을 활명하였을 경우, 제대로 식별하기 어려하다. 따라서 환경원 영상이 누구인지 알아보기 위해서는 활명된 영상을 확대하여야만 하는데 이처럼 영상을 확대보완하기 위해서 일반적으로 '보간법'이라는 기법을 사용한다[1][2].

영상을 확대하는 기법에서 주의해야 할 사항은 단순히 영상을 커버하는 것이 아니라, 원영상과 가까운 양으로 확대 보완하는 것이 중요하다. 그러나 지금까지 알려진 보간법으로는 확대 배율이 크면 클루스 식별이 불가능한 정도로 영상품질이 많이 떨어지게 된다. 그 이유는 활명된 영상이 비트맵 이미지가기 때문이다. 비트맵 이미지가 가지고 있는 특성상 확대 시 영상의 품질 저하는 당연한 결과이다. 이러한 비트맵 이미지가 가지고는 문제점을 해결하기 위해서 본 논문에서는 벡터 이미지 개념을 이용하였다.

특히 본 논문에서 보완하려는 영상은 사람의 얼굴영상을 의미한다. 보완하고자 하는 얼굴 영상 전체를 벡터화하여 보완한다면 좋은 품질의 보완 영상을 얻을 수 있지만, 현실적으로는 매우 어려운 방법이다. 따라서 사람의 시각 인지에 많은 영향을 줄은 얼굴의 전체적인 이목구비만 벡터화하여 보완하면 단순보간법만으로 보완한 영상보다 좋은 품질의 영상을 얻을 수가 있다.

II. 관련 연구

본문에서는 이미지 처리방식의 비트맵방식과 벡터방식의 차이점과 보간법에 대하여 살펴보고 얼굴 영상 정보를 표현하기 위한 방법 중에서 가장 널리 사용되고 있는 FDP에 대하여 살펴본다.

1. 비트맵 방식과 벡터 방식

이미지를 저장하는 방식은 여러 가지가 있으나, 그 기술적인 방식으로는 비트맵 이미지와 벡터 이미지로 나누어진다. 비트맵 방식은 정의 조합으로 이미지를 표현하는 방식으로, 확대, 축소시 이미지가 손상되는 단점을 가지고 있으나 모든 종류의 이미지를 표현할 수 있다. 이에 비교하여 벡터 이미지는 선, 면 등의 수학적 개념을 이용하여 이미지를 표현하는 방법으로, 임의 대입과 조작이 가능하다. 쌍, 라인과 위치 속성은 표현하기 쉽게 한다. 이와 비교하여 벡터 이미지는 선, 면 등의 수학적 개념을 이용하여, 벡터 이미지를 표현하는 것이다. 벡터 이미지의 확대, 축소는 이러한 데이터들의 속성을 수정하면 되기 때문에 확대, 축소하여도 이미지가 손상되지 않는다. 그러나 이미지 생성 시에 벡터 정보가 같이 저장되어야 하므로 이미지 생성 시간이 길다는 단점이 있다[3][4].

본 연구에서는 이러한 벡터 방식의 장점을 살려서 복원할 때 사람들의 시각 인식에 많은 영향을 줄은 얼굴을 잘 벡터화하여 복원하고자 한다.

2. 보간법(Interpolation)

영상에서 보간이란 크게 보간 영상의 기하학적 좌표 과정의 하나라고 할 수 있다. 기존적인 기하학 처리에는 크기, 회전, 이동 처리를 수행한다. 기하학적 영상처리란 복설의 위치를 새로운 경계에 해당하는 과정이지만 확대와 같은 영상 처리 과정은 없던 복설 값이 새롭게 생성되기 때문이다. 이러한 처리 과정은 입력대역의 사상으로 설명되어 될 수 있는데 기하학적 처리과정에 의해 새롭게 생성된 복설 값은 보간법에 의해 얻어진다[5][6]. 기하학적 영상처리가 필요한 이유는 여러 가지가 있으나 본 연구에서의 복설의 경우 복설값을 사용하여 합성을 하기 위한 방법의 원리에 갈 수 없게 된다[7][8].

영상의 크기이나 높이로 인한 새로운 위치의 복설값을 결정하는 방법이 보간법에 의해 수행된다. 즉, 보간법이란 영상을 변환할 때 실제로 없는 복설 값을 어떻게 생성해 낼 것인가이다. 예를 들어 [그림 1]에서와 같이 2x2
FDP기반의 얼굴윤곽 정보를 이용한 2차원 얼굴영상 복원기법

35

픽셀을 2배 확대할 경우, 원영상의 총 4개의 픽셀이 확대 후 9개의 픽셀로 늘어나며 좌표(0,0)은 (0,0)으로 (1,0)은 (2,0)으로 (0,1)은 (0,2)로 (1,1)은 (2,2)로 사상이 이루어진다. 즉, 식(1)과 같이 원영상의 좌표(x, y)에 확대인수 T_x, T_y를 곱하여 얻은 좌표 (x', y')가 확대된 영상의 좌표이다. 그러나 $(0,1), (1,0), (1,1), (1,2), (2,1)$의 좌표에는 어떠한 값도 들어가지 않게 된다.

이처럼 영상이 확대되면 빈 셀이 발생하게 되는데 이러한 빈 픽셀을 '홀(hole)'이라고 한다. 이 홀에 원치 않는 픽셀 값이 들어가게 되면 영상품질은 헛어지게 된다. 그리고 확대 베타가 클수록 홀의 수가 증가하게 되어 영상의 품질은 더욱 헛어지게 된다. 따라서 홀에 어떤 값을 넣느냐에 따라 영상의 품질이 좋아질 수도 나빠질 수도 있다.

그림 1. 원영상과 확대영상(2×2확대)

$$ (x', y') = ((x \times T_x), (y \times T_y)) \tag{1} $$

이러한 보간법의 종류로는 이웃화소보간법, 평균값보간법, 양선형보간법, 3차회선보간법, B-스플라인보간법 등이 여러 종류가 있는데[9][10], 양선형보간법은 영상에 사용되는 가장 일반적인 보간 기법이다. 양선형보간법에 서 새롭게 생성된 픽셀은 [그림 2]와 같이 4개의 가장 가까운 픽셀 값에 가중치를 곱하는 값들의 합이 된다. 즉, 이웃한 픽셀의 거리에 따라 선형가중치를 적용하여 픽셀 값을 생성하는 방법이다[11][12].

그림 2. 양선형보간법에 의해 픽셀값 추정

3. FDP(Facial Definition Parameter)

MPEG-4 SNHC(Synthetic Natural Hybrid Coding)의 여러 분야 중 FBA(Face and Body Animation) 그룹에서는 인간의 얼굴과 몸체를 가상환경 안에서 구현하고 에니메이션을 가능한 3차원 아바타를 표준화하였다[13]. 특히 FBA 그룹에서 표준화한 얼굴정보파라메터인 FDP란 실시간으로 아바타를 표현하고 여러 가지 다양한 움직임을 표현하기 위해 얼굴 객체에 대한 중요한 점들 을 특정점으로 정의한 것이다. FDP는 실제 인간의 얼굴을 대상으로 해서 개개인의 얼굴특성을 84개의 특정점을 이용하여 표현하였다. 즉, 최소한 이 84개의 특정점을 이용하면 개개의 독특한 얼굴 특성을 표현할 수 있다는 것이다[14].

현재까지 MPEG-4 SNHC FBA 그룹에서는 6개의 모델에 대한 FDP가 제공되는데, 치아, 힘 등이 포함되지 않은 61개의 특정 점으로 구성된 Jim,n, Claude_n, Chen_n 등의 3개의 모델과 모든 특정점으로 구성된 Charles, MIRAFace, ISTmodel 등의 3개의 모델이 있다. MPEG-4에 제시된 FDP는 얼굴의 빗모습과 목부분등 3차원 얼굴 객체를 생성하기 위해 필요한 모든 정보를 제공하지는 않는다. [그림 3]은 표준안에 제시된 치아와 힘이 포함되지 않은 61개의 특정점을 나타낸 것이다[15-18].
III. 얼굴 운동 정보를 이용한 복원기법

본문에서는 앞에서 살펴본 여러 가지 복원방법 중 양안형보간법과 저자가 제안한 방법을 이용하여 영상을 복원하고자 한다.

[그림 4]는 양안형 보간법으로 보간한 영상이다. 여기서 보면 원본 이미지가 보간한 이미지 보다 혼란 선명하다는 느낌을 받게 된다.

그림 4. 원본 영상과 양안형보간(16배)영상

이는 보간한 이미지가 단순 확대한 것이기 때문에 이미지가 많이 그저있으며, 경계면이 혼란하게 나타나는 현상(blurring) 때문이다. 이러한 문제를 해결하기 위해

서는 원 영상의 벡터정보가 있으면 좋겠으나, 현실적으로 그량지 못하기 때문에 사람들의 인식체계에 영향을 많이 주는 얼굴소모를 벡터화하여 복원하고자 한다.

1. 얼굴 인식 요소

(a) 원영상
(b) 원영상에 귀를 수정한 영상
(c) 원영상에 입을 수정한 영상
(d) 원영상에 눈을 수정한 영상

그림 5. 이목구비에 따른 얼굴인식 차이 비교

(a)는 원 영상이고 (b)는 귀를 바꾼 그림이다. 그림에서 알 수 있도록 귀를 바꾼 것은 사람을 인식하는데 있어서 크게 문제되지 않는다는 사실을 알 수 있다. 하지만 (c)와 같이 입을 바꾼 경우나 (d)와 같이 눈을 바꾼 경우는 다른 사람으로 오인할 수 있다. 실제 입을 바꾼 경우는 대부분의 사람이 동일인임을 알지 못했다. 따라서 사람을 인식하는데 있어서 눈, 입과 같은 부위는 중요할 역할을 하지만 귀와 같은 비부위는 인식하는데 있어서 중요하지 않은다는 사실을 알 수 있다.

그리고 눈먼범에 대한 정보는 중요하다고 판단되며, 실제 획득한 영상의 품질이 좋지 않다면, 눈먼범 정보를 찾아내기 매우 어렵다. 예를 들어 [그림 6]에서 보듯이 복원하려는 영상이 아주 작은 영상이기 때문에 확대하여

(a) 50×50 원영상
(b) 200×200 보간된 영상

그림 6. 보간한 영상의 확대와 비교
 설레보면 눈꺼풀 정보는 찾아볼 수 없음을 알 수 있다.

![그림 6. 원영상의 눈꺼풀 정보](image)

따라서 얼굴 정보를 벡터화 할 때 있어서 귀와 눈겨울 정보는 이용하지 않고, 이목구비에 대한 정보를 이용하여 벡터화 하면 복원 시에 원 영상을 왜곡하지 않고 좋은 결과를 얻을 수 있게 된다. 또한 영상의 선명도를 위하여 얼굴 외곽선에 대한 정보도 벡터화하면 변형현상 (blurring)을 줄일 수 있다.

2. FDP 특징점을 이용한 얼굴 윤곽정보 추출

본 논문에서는 원 영상에서 얼굴윤곽만 따로 제외하여 벡터화 하여 복원하고 얼굴윤곽을 제외한 나머지는 기본적인 보간법인 양성형보간법을 이용한다. 먼저 원영상은 일반적으로 작아서 FDP 특징점을 추출하기가 어려우므로 원영상을 먼저 확대하여, [그림 7]에서와 같이 FDP에서 제공하는 전체 84개의 특정점 중에서 귀에 대한 정보 (10.1-10.6)와 눈꺼풀에 대한 정보 (3.9, 3.10, 3.13, 3.14), 차이나 변환의 정보를 제외한 51개의 특정점 좌표를 원본 이미지에 매칭 시키는 작업을 수행한다. MPEG-4에서 제공한 FDP의 경우에 따라 좌표의 위치는 복원하려는 원 영상의 얼굴 비례에 맞도록 특정점 위치를 정한다. 실제 복원하려는 영상은 매우 작은 영상이므로 정확한 위치를 잡기는 어렵다. 따라서 FDP에서 제공해주도 위치를 규정하여 원영상을 확대하여 복원에 필요한 부분의 포인터에 매칭시킨다.

![그림 7. 확대 영상에 FDP특징점 매칭](image)

3. 벡터화 및 영상 복원

3.2절에서 설명한 얼굴 윤곽정보 추출알고리즘을 좀 더 자세히 기술하면, [그림 8]의 (a)와 같이 원 영상을 확대하여, FDP 특징점을 정한 후, [그림 8]의 (b)와 같이 얼굴 윤곽선을 벡터화하여 추출한다. 이 윤곽선을 원영상의 비율로 축소하여 [그림 8]의 (c)와 같이 매칭 시킨다. 매정 된 영상에서 얼굴윤곽에 대한 원영상의 픽셀 값 을 얻어내면 [그림 8]의 (d)와 같이 완벽한 벡터 정보를 얻게 된다.

![그림 8. 얼굴외곽영역 추출 및 픽셀 값 정보 획득](image)

그 다음 영상 복원의 최종단계로, 이 벡터자료를 확대 영상에 적용하면 보다 좋은 품질의 복원 영상을 얻게 된다. 즉, [그림 9]에서와 같이 확대영상에 매칭시킨다.
전형보간법으로 복원한 영상과 제안한 방법으로 복원한 영상을 PSNR값으로 비교해보았다.

본 논문에서 제안하는 보간 알고리즘은 [표 1]에서와 같이 확대된 영상의 PSNR 비교에서 여러 영상에 대하여 평균적으로 약 0.8dB의 향상을 보였다. 따라서 성질과 표정에 관계없이 제안한 방법이 상당히 유용하다는 것을 알 수 있다.

표 1. 양선형보간법과 제안한 방법의 PSNR 비교

<table>
<thead>
<tr>
<th></th>
<th>양선형보간법</th>
<th>제안한 방법</th>
<th>PSNR 이득</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)영상</td>
<td>24.24</td>
<td>28.49</td>
<td>2.25</td>
</tr>
<tr>
<td>(b)영상</td>
<td>28.00</td>
<td>29.21</td>
<td>1.21</td>
</tr>
<tr>
<td>(c)영상</td>
<td>32.45</td>
<td>34.33</td>
<td>1.91</td>
</tr>
<tr>
<td>(d)영상</td>
<td>26.58</td>
<td>26.89</td>
<td>0.31</td>
</tr>
<tr>
<td>(e)영상</td>
<td>27.88</td>
<td>28.22</td>
<td>0.34</td>
</tr>
<tr>
<td>(f)영상</td>
<td>26.46</td>
<td>26.61</td>
<td>0.15</td>
</tr>
<tr>
<td>(g)영상</td>
<td>26.61</td>
<td>26.93</td>
<td>0.32</td>
</tr>
<tr>
<td>(h)영상</td>
<td>25.70</td>
<td>25.85</td>
<td>0.15</td>
</tr>
<tr>
<td>평균</td>
<td>27.26</td>
<td>28.05</td>
<td>0.79</td>
</tr>
</tbody>
</table>

개선된 방법으로 백터의 이미지를 확대

표 11. 다양한 영상(50×50)을 양선형보간법 (200×200)과 제안한 방법(200×200)으로 복원한 결과

IV. 실험 결과 및 개선안

앞서 설명한 과정과 같이, 양선형보간법과 제안한 방법으로 [그림 10]과 같은 최종 결과 이미지를 얻어내었다. 최종 결과 영상을 보면, 물론 주관적일 수도 있지 만, 기존의 방법으로 복원된 것 보다 활용 더 좋은 품질로 복원이 되었음을 알 수 있다.

실제로 원 영상이 매우 작을 경우 그 영상의 FDP 좌표를 찾기란 여간 여려운 일이 아니다. 따라서 기본 모델과 그 FDP를 제시하여 복원하려는 영상과 기본 모델 중 비슷한 영상형태의 모델을 선택하여 그 모델의 FDP를 이용하면 손쉽게 백터 화할 수 있다.

본 논문에서는 얼굴 형태의 눈과 크기, 입의 크기로 우선 구분하여 이외의 기본 얼굴모델을 만들었다. 얼굴 형태는 동근형, 제관형, 긴형, 눈의 크기로는 큰 눈, 작은 눈, 입의 크기로는 큰 입, 작은 입으로 나누었다. 그래서
이 모든 경우의 조합으로 총 12개의 기본 얼굴모델을 만들었다. [그림 12]는 12가지 기본 모델과 그 FDP를 나타낸 것이다. ⑤번 모델의 FDP를 이용하여 복원한 영상과 실제 실험영상의 FDP를 이용하여 복원한 영상을 서로 비교해 보면 [그림 14]와 같이 큰 차이가 없음을 알 수 있다. 따라서 본 영상에서 FDP 정보를 얻기 힘들 경우에 제시한 기본 모델의 FDP를 이용해도 충분한 효과를 얻을 수 있음을 알 수 있다.

그림 13. 실험영상 FDP와 기본 모델 ⑤번 FDP 비교

그림 12. 12가지 기본 모델과 그 FDP

본 실험에서 사용한 영상 [그림 7]의 FDP와 12가지 기본 모델의 FDP 중 가장 일치하는 모델은 ⑤번 모델이다. [그림 13을 보면 ⑤번 모델이 가장 유사하다는 것을 알 수 있다. 물론 실험영상과 모델 영상의 유사성을 찾아내는 것과 쉬운 작업은 아니지만, 실험 영상에서 FDP를 찾아내는 작업보다는 쉬운 것이라고 판단된다.
V. 결 론

영상이 확대한 경우 보간법이란 기법을 이용하게 되는 데 보간법이란 확대로 인해 생긴 빈 셀에 적절한 값 을 새롭게 생성하는 것을 의미한다. 따라서 생성해야 하는 셀의 개수가 많으면 많은수록 영상의 품질은 떨어질 수밖에 없다. 본 논문에서는 이러한 기존의 보간법이 가지고 있는 문제점을 개선하고 새로운 방법을 제안하였다.

제안 방법은 MPEG-4 SNHC FBA 그룹에서 얼굴 객
채에 한하여 중요한 점들을 특정점으로 정의한 FDP를
이용하여, 이를 바탕으로 얻은 얼굴점자점을 벡터화
함으로써 확대시 얼굴점자점을 축소하여 수량보간
법으로 복원한 영상보다 얼굴 심벌에 있어서 큰 효과를
얻을 수 있다. 그리고 복원하려는 원 영상의 품질이 결과
영상의 품질을 좌우하게 된다. 실제 복원하려는 영상의
품질이 원래의 품질에 비해 상대적으로 낮은 경우에는
상술한 이러한 방법으로
도 복원이 불가능하며 본 논문에서 제안한 방법으로도
좋은 효과를 얻을 수는 없다. 따라서 원 영상의 품질은
어느 정도 보장이 되어야 복원의 효과가 있다. 또한 복원
하려는 영상이 아주 작은 영상일 경우, 그 영상의 FDP점
보를 알아내기만 되면 훨씬 효과적이다. 따라서 본 논문에서는
영상피성(한국인)에 대한 12가지 기본 모델의 FDP를 제
안하였으며, 이를 이용하면 쉽게 FDP 정보를 추출할 수
있다.

항후 연구 과제로서는 경면에서 촬영된 영상이 아닐 경
우, 예를 들어 기울어진 영상일 때는 어떻게 처리할 것인
g리고 제시한 12가지 기본 모델의 FDP 이용의 다양
한 모델이 필요하고, 또한 원영상이 갈라 영상이면 복원
효과가 더 중대해진다, 이에 대한 실험도 필요하다고 판
d단된다. 마지막으로 각각상의 편의를 위하여 자동으로
FDP 정보를 찾아낼 수 있는 프로그램이 개발된다면 본
연구 결과가 창업 용이하게 사용될 수 있을 것이다.

[14] MPEG-4 System Sub-group, *MPEG-4 System Methodology and Work Plan for Scene
Description, ISO. IEC. JTC1. SC29. WG11.

Face and Gesture Recognition, France, Mar.,
2000.

[16] 김상훈, “다양한 형식의 얼굴정보와 준원근 기반
라 모델에의 적용형 얼굴특성점 및 음직임 복
원”, 정보처리학회논문지, 제9권, 제5호, pp.363-
570, 2002.

MPEG-4/SHNC parameter streams,” Insect
Science and Its Application, Vol.2, pp.924-928,
1998.

from an Image Sequence,” IEEE International
Symposium on Circuits and Systems, Vol.1,

조 남철(Nam-Chul Cho) 정회원

- 2003년 2월 : 가야대학교 컴퓨터
공학부(공학사)
- 2005년 2월 : 영남대학교 컴퓨터
공학부(공학석사)
- 현재 : 영남대학교 컴퓨터공학과
박사과정

<관심분야> : Image Processing, Machine Vision

이 기 동(Ki-Dong Lee) 정회원

- 1985년 2월 : 서울대학교 공과대
학 제어계측공학(공학사)
- 1987년 2월 : 서울대학교 공과대
학 제어계측공학(공학석사)
- 1994년 2월 : 서울대학교 공과대
학 제어계측공학(공학박사)
- 1995년 - 현재 : 영남대학교 전자정보공학부 부교수

<관심분야> : 인공지능, 로보틱스, 멀티미디어 정보
처리, 정보보안

저작소개