Journal of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 7, pp. 917~ 928, 2006 917

A QP Artificial Neural Network

Inverse Kinematic Solution for Accurate Robot Path Control

Sahin Yildirim*, Ikbal Eski
Erciyes University, Faculty of Engineering, Mechanical Engineering Department,
Kayseri, 38039, Turkey

In recent decades, Artificial Neural Networks (ANNs) have become the focus of considerable

attention in many disciplines, including robot control, where they can be used to solve nonlinear
control problems. One of these ANNs applications is that of the inverse kinematic problem,
which is important in robot path planning. In this paper, a neural network is employed to
analyse of inverse kinematics of PUMA 560 type robot. The neural network is designed to find
exact kinematics of the robot. The neural network is a feedforward neural network (FNN). The
FNN is trained with different types of learning algorithm for designing exact inverse model of
the robot. The Unimation PUMA 560 is a robot with six degrees of freedom and rotational

" joints. Inverse neural network model of the robot is trained with different learning algorithms

Nomenclature

a; . The distance from Z; to Z;: measured
along X;

@; . The_angle between Z; to Z;y1 measured
about X;

d: : The distance from X1 to X; measured
along Z;

#; . The angle between X;_; to X; measured
about X;

Dx, Dy, Pz . End-effector coordinate of x,v, 2
frame

¢T : Transform matrices from have to joint 6

Ci : Cos 6;

Si : Sin 6;

C23  © CaC3™5253

S23 . C2837+S2C3

* Corresponding Author,
E-mail : sahiny @erciyes.edu.tr
Erciyes University, Faculty of Engineering, Mechani-
cal Engineering Department, Kayseri, 38039, Turkey.
(Manuscript Received February 18, 2005; Revised May
8, 2006)

Ci2
S12
Se

Ce

a

for finding exact model of the robot. From the simulation results, the proposed neural network
has superior performance for modelling complex robot’s kinematics.

Key Words : Artificial Neural Network, Robot Path Control, PUMA Robot

: C1C2—S8182
. C152+81C2
:S13
: Ciz3

. Learning rate
. Momentum term

Aw;;(t) | The weight matrices from Z.layer to j.

layer variations after update

. Error variations for weights

. Derivation of error in weights

. Exponential averége of past value of &

. Constant value for learning rate

. Correction factor of learning rate

. Coefficient of the exponential average val-

ue

. Maximum growth factor

. Weight matrices from 7.layer to j.layer

. Training numbers

. Number of neurons in the input layer

. Number of neurons in the hidden layer
- Number of neurons in the output layer
. The output vector of the hidden layer

. Activation function



918 Sahin Yidiim and Ikbal Eski

1. Introduction

The ability of ANNs to approximate highly
non-linear functions has been broadly applied in
diverse applications such as pattern recognition,
robot control and image processing. In particular,
the use of ANNSs in control applications has re-
cently experienced rapid growth. Various control
strategies have been suggested using ANNs tech-
nology (Tchon, 2000), which learn an approxi-
mation of systems’s characteristics and then use
the ANNSs to generate the appropriate control sig-
nal. In practical robot control applications, ANNs
can provide tools for system identification, in-
cluding forward and inverse plant identification.
Although ANNs applicable to the solution of
robot control problems are, in fact, neurocontrol-
lers, their function is specialized mainly to pro-
vide solutions to robot arm kinematics problems.

In the practical use of manipulators, the two
fundamental operations that relate to the loca-
tions of the end-effector are forward and inverse
kinematics. Specifically, given a set of joint angles,
the forward kinematics problem is to compute the
position and orientation of the end-effector, is to
calculate all possible sets of joint angles which
could be used to attain this given position and
orientation. Solving the forward kinematics prob-
lem is straightforward. Inverse kinematics is not
as simple as forward kinematics as they are a
multi-solution problem. Because of its highly
non-linear characteristics, the solution of inverse
kinematics is not always easy or even possible in
a closed form (Aspragathos, 1998 ; Pashkevich,
1997).

Since 1979, many research papers have been
published to solve the kinematics problem of ro-
bot manipulators using ANNs, which is basically
a function approximation problem (Bravo, 1990 ;
Guez and Ahmad, 1989). Most of papers have
applied Back Propagation (BP) neural networks
to approximate the complicated inverse kinema-
tics solution.

A three-fingered anthropomorphic robot hand,
called SKK Robot Hand I, has been investigated
by Kang et al.(2003). Their proposed hand was

developed for the use as a testbed for dextrous
manipulation. It was expected to resolve the in-
creasing demand for robotic applications in un-
structured environments.

A 3-PPR planar parallel manipulator, which
consists . of three active prismatic joints, three
passive prismatic joints, and three passive rota-
tional joints, has been proposed (Choi, 2003).
The analysis of the kinematics and the optimal
design of the manipulator have also been discuss-
ed and one example using the optimal design was
presented.

A new method of estimating the pose of a
mobile-task robot has been developed based up-
on an active calibration scheme. The utility of a
mobile-task robot has been widely recognized,
which is formed by the serial connection of a
mobile robot and a task robot. Their proposed
active calibration scheme was verified experimen-
tally (Jin and Lee, 2003).

The control scheme using fuzzy modelling and
Parallel Distributed Compensation (PDC) con-
cept has been proposed to provide asymptotic
tracking of a reference signal for the flexible joint
manipulators with the uncertain parameters (Lee
et al., 2004) .

A robust position control with the bound func-
tion of neural network structure has been inves-
tigated for uncertain robot manipulators. The un-
certain factors come from imperfect knowledge of
system parameters, payload change, friction, ex-
ternal disturbance, and etc. Therefore, uncertain-
ties were often nonlinear and time varying. Si-
mulation was performed to validate this law for
four-axis SCARA type robot manipulator (Ha
and Han, 2004).

This paper proposes a neural network strategy,
namely the neural network modelling method, to
avoid the difficulties of local minima and other
residual errors to improve the accuracy of the
inverse solution using ANNs technology. The
method iteratively employs the easily obtained
analytical inverse solution and an ANNs with
different learning algorithm to calculate the com-
plex inverse solution.

The following sections describe the process for
iteratively solving the inverse kinematic probiem



A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control 919

for practical robot manipulators, using algebraic
method. Section 2 introduces the inverse kine-
matic solution method of PUMA robot. Section
3 is described neural network theory and learn-
ing algorithms. The results of this simulation are
used to demonstrate the feasibility of using neural
network modelling method of PUMA robot (see
Section 3). Finally, a discussion and conclusions
are presented in the last section.

2. Inverse Kinematic Solution of
Puma Robot Manipulator

Kinematics is the science of motion, which
treats motion without regard the position, veloci-
ty, acceleration and all higher derivates of the
position variables. Hence, the study of the kine-
matics of manipulators refers to all the geome-
trical and time-based properties of the motion.
The relationships between these motions and the
forces and torques, which cause them, are the
problem of dynamics. The study of manipulator
kinematics involves, among other things, how the
locations of these frames change as the mech-
anism articulates.

In this section, the kinematics of PUMA 560
robot is worked out. The PUMA 560 is a robot
manipulator with six degrees of freedom (dof)
and all rotational joints. It is shown in Fig. 1
with link frame assignments in the position cor-
responding all joint angles equal to zero. The link
parameters corresponding to this placement of the

link frames are shown in Table 1. In the case of
the PUMA 560 a gearing arrangement in the wrist
of the manipulator couples together the motions
of joints 4, 5 and 6.

The location of the PUMA robot can be de-
scribed by three variables ; (x,v,2) represent the
position. Hence a network with 3 inputs. The
PUMA 560 manipulator has a special physical
structure for its kinematics that the first there
joints determine the P position of the robot,

Fig. 1 Kinematic parameters and frame assignments
for the PUMA 560 manipulator

Table 1 Desired kinematics parameters of the robot

Px . Py Pz 6 & b4 & O

[mm] - (mm] (mm] [degree] | [degree] | [degree] | [degree] | [degree] | [degree]

86.35 829.34 671.94 73.76 —19.79 129.71 0.0 70.08 73.76
204.80 686.19 695.62 61.40 —39.23 164.16 0.0 55.06 61.40
314.52 563.52 709.55 47.47 —48.90 179.18 0.0 49.22 47.47
411.64 463.01 712.97 34.44 —51.42 184.12 0.0 47.30 34.44
.524.27 350.38 712.97 20.08 -50.26 182.01 0.0 48.25 20.08
632.42 249.07 706.13 8.83 —44.34 17.21 0.0 52.13 8.83
708.15 190.43 689.03 3.32 —36.69 160.35 0.0 56.34 3.32
793.50 125.60 668.52 —1.70 —25.25 141.00 0.0 64.25 —1.70
834.12 197.83 555.67 3.33 —4.21 114.36 0.0 69.05 3.33




920 Sahin Yudinm and 1kbal Eski

measured from the origin of the shoulder coordi-
nate system to the point where the last three joint
axes intersect, and the orientation of the end ef-
fector is determined by the last three joints. There
for it is possible to solve the problem caused by
limitation of the software by one step. The step
has an ANNs'to obtain a set of joint angles ; only
step was used to solve for the six joints angles and
rotational angles. The inverse neural network
model of the robot kinematics is shown in Fig. 2.
The inputs of the network include the position
P={(x,y,2z). The outputs are joints angles for
position and rotation (61, &, &, Gi, 6, Gs).

As an example of the algebraic solution tech-
nique applied to a manipulator with six degrees
of freedom, they will solve the kinematics equa-
tions of the PUMA 560. This solution is in the
style of {Craig, 1989).

71 Yz "3 Dx
Y21 Y22 723 Py (1)
Va1 732 Va3 Dz
0 0 0 1

§T=T () 2T (8) 3T (&) iT (6) -3T (&) 3T ()

for §: when 2T is given as numeric values. A
restatement of equation (1) which puts the de-
pendence on 6 on the left-hand side of the equa-
tion can be written in the following form ;

BT ] 4T
=3T(6) 5T (&) -iT (60 8T () 3T (6s)

Inverting § T above general equation can be writ-

oo

T=

(2)

ten matrix form as follows,

a $100|[ ru 72 ns Px
—51 200 721 722 733 Py —iT (3)
-6
0 0 10|| 7 7s2 733 Pz
0 001JLO0 O O 1
End-cffector position (%,%,2) | juverse Kinematic | JOINt positions (8:.62,05.8:.85, 9¢)
> of PUMA
ANNSs Inverse
» Ki ic model
Oiny o Donn
»

Fig. 2 An ANNs inverse kinematic modeling of
PUMA

where 7y is,
11’32=823[C4C586 + S4C‘s] ~+ 238556 (4)

This simple technique of multiplying each side of
a transform equation by an inverse is often used
to advantage in separating out variables in search
of a solvable equation. Equating the 2, 4 elements
from both sides of equation (3),

—Sipxt LDy =ds (5)

To solve an equation of this form, they make the

trigonometric substitutions,
px=pcos ¢
_ (6)
py=psing

where,

pzm, ¢=A tan 2(Py, px)

Substituting equation (6) into equation (5),
CIS¢—‘SIC¢:@ (7
0
Using the difference of angles formula,

sin(¢—6) =% (8)

cos(¢—¢91)=i1/ 1—%%{ (9)
¢—01=Atanz(%i /1—%{) (10)

Finally, the solution for first joint rotation §; may
be written,

6=A tan 2 (px, py)
—Atan2(dy, */+ 12+ dE)

Note that they have found two possible solutions
for 6 corresponding to the plus-or-minus sign
in equation (11). Now that & is known, the left-
hand side of equation (3) is known. If they
equate the 1, 4 elements from both sides of equa-
tion (3) and also the 3, 4 elements,

Hence,

(11)

Cipxt SiPy=asCa— daSzat @262, (12)
— pzr=asS3+ diCost az52
If they square equations (12) and (5) and add the
resulting equations,



A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control 921

ascs— diss=K (13)
K=p§+p§+p€—2ai—a§+dsz—df (14)

Note that dependence on @, has been removed
from (13). Equation (13) is of the same form as
equation (5) and so may be solved by the same
kind of trigonometric substitution to yield a so-
lution for third joint rotation & :

G:=Atan 2(as, d) (15)
—Atan2(K, +/d+di—K’)

The plus-or-minus sign in equation (15) leads
to two different solutions for third joint rotation
6. If they consider equation (1) again, they can
now rewrite it so that all the left-hand side is a
function of only known and 6&:

BT (&) ]7-8T=1T(6) 4T (&) 8T (6) (16)

711 12 113 Dx
Vo1 Va2 723 Dy

=3T (17)
Y21 Y32 733 Dz

0001

C1C3  S1Cn — 81 203
—C1528 —S81S8 —Cn G283
—381 C1 0 - da
0 0 0 1

Equating the 1, 4 elements from both sides of
equation (17), as well as 2, 4 elements,

T=3T 4T
— C4C5C6— S4S6 — C4C586 — S4Cs C4S5 A3
$5Ce — 8586 cs da (18)
| —sicsce—case SacsSs—cacs sss 0
0 0 0 1

C1Capxt S1Cspy— Seapz— azCz=as

19
— C1523Dx— S1S23Py — CasDzt+ @253 =l (19)

These equations may be solved simultaneously for
Sza and Cas, resulting in

(—as—azcy) p+ (apxtsipy) (azss—dy)
et (apxtsipy)?

_ (azss—dy) pz+ (— as— azcy) (Cipxt5:10y)
it (cipxtsipy)?

S23=

Since the denominators are equal and positive,
they solve for the sum of & and & as,

(—as—aacs) po—(Cpxts10y) (di—ass)

=A 2
fa=Atan (25— dy) p— (@s+a2cs) (Cipstsuy)

1)

Equation (21) computes four values of 6 ac-
cording to the four possible combinations of solu-
tions for & and 6. Then, four possible solutions
for & are computed as,

6= 6n— 065 (22)

Where the appropriate solution for & is used
when forming the difference. Now the entire left
side of equation (17) is known. Equating the 1, 3
elements from both sides of equation (17), as well
as the 3, 3 elements,

713C1C23+ 72351Co3 — #33523= — C4Ss

(23)
— 71381+ 23C1="5485

As long as s57+0, they can solve for & as
Gi=Atan 2(—rss1+ 7801, — 113010~ aS1Cos— FsSzs) (24)

When 6 the manipulator is in a singular config-
uration in which joint axes 4 and 6 line up and
cause the same motion of the last link of the
robot. In this case, all that matters (and all that
can be solved for) is the sum or difference of &,
and 6. This situation is detected by checking
whether both arguments of the A tan2 in equa-
tion (24) are near zero. If so, & is chosen arbi-
trarily and when & is computed later, it will be
computed accordingly.

If they consider equation (1) again, they can
now rewrite it so that all the left~hand side is a
function of only known and 6, by rewriting it as,

ST ()17 8T=4T (&) 3T (6 (25)
where [$7 (8,)]7!+3T is given by,

CICBCaF$18e S1C3C—C181 —Sm3Cy — BeCaCa+ hSs—aacy

C1Cn8aF 5161 —S1688s—C1Cs SmSe GaCaCat daCat Casa (26)
—C152 — 8153 —Cx 08— dy
0 0 0 1

Equating the 1, 3 elements from both sides of
equation (25), as well as the 3, 3 elements,

rs(cicmcatsiss) +ralsicnci—ais) —ra(suc) =—s5 (27a)
713(—C1828) + 723 (—s1823) + 733(— c23) =5 (27b)

So they can solve for & as,
6=A tan 2(ss, ¢s) (28)

Where s5 and ¢s are given by equation (27a and



922 Sahin Yidwim and I kbal Eski

27b) above. Applying the same method one more
time, they compute (27°)™* and write (1) in the
form,

GT)8T=T (6 (29)

Equating the 3, 1 elements from both sides of
equation (25), as well as the 1, 1 elements as they
have done before,

O:=A tan 2(ss, cs) (30)
where,
$6= — 711 (C1C084— $186) — 71 (102884 + C1Ca) + 721 (52384)

Ce= 7’11[ (ciemet $184) C5— 0182335]
+ 1y [ (81 Co3C4™ C1S4) Cs —51.5‘2385] — 1 (5‘2364(:5 + Cszs>

Because of the plus-or-minus signs appearing in
(11) and (15), these equations compute four so-
lutions. Additionally, there are four more solu-
tions obtained by “flipping” the wrist of the
manipulator. For each of the four solutions com-
puted above, they obtain the flipped solution by,

64,=94+180°
K=—=6 (31
& =6+180°

After all eight solutions have been computed,
some or all of them may have to be discarded
because of joint limit violations. Of the remaining
valid solutions, usually the one closest to the
present manipulator configuration is chosen.

3. Feedforward Neural Network

A Feedforward Neural Network (FNN) shown
in Fig. 3 very loosely based on these ideas. In
the most general terms, a FNN consist of large
number of simple processor linked by weighted
connections. By analogy, the processing nodes
may be called ‘neurons’. Each node output de-
pends only on information that is locally avail-
able at the node, either stored internally or arriv-
ing via the weighed connections. Each unit re-
ceives inputs from many other nodes and trans-
mits its output to yet other nodes. By itself, a
single processing element is not very powerful ; it
generates a scalar output with a single numerical
value, which is a simple nonlinear function of

2
AL 2)
PA LS

DA L1775
SRS OFUZ LN
/"‘3-@!//&:'4;,;

Y

Yz
/;

A +1

Bias ky Output Layer

O ¢ Lineer neuron
O : Non-lineer neuron

Fig. 3 Inverse Neural network model of PUMA
robot

its inputs. The power of the system emerges from
the combination of many units in an appropriate
way.

A network is specialised to implement different
functions by varying the connection topology and
the values of the connecting weights. Complex
functions can be implemented by connecting units
together with appropriate weights. In fact, it has
been shown that a sufficiently large network with
an appropriate structure and property chosen
weights can approximate with arbitrary accuracy
and function satisfying certain broad constraints.

Usually, the processing units have response
like,

yi=f (Du,) (32)

i

Where u; are the output signals of hidden layer
to output layer, f(.) is a simple nonlinear func-
tion such as the sigmoid, or logistic function. This
unit computers a weighted linear combination of
its inputs and passes this through the nonlinearity
to produce a scalar output. In general, it is a
bounded non-decreasing nonlinear function ; the
logistic function is a common choice.

g(2) =T{-1e—"z (33)

This model is, of course, a drastically simplified
approximation of real nervous systems. The in-



A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control 923

tend is to capture the major characteristics im-
portant in the information processing functions of
real networks without varying too much about
physical constraints imposed by biology.

3.1 Learning algorithm

The learning algorithm topology, which was
employed for the neural network updating the
weight can be described as follows ; define the
error function as,

X
=)

J=% 2 () = 3:(0)* (34)

i

Where yq(f) are the ith desired outputs and
v:(#) are the ith outputs of the network. This
error function is to be minimised with respect to
all the unknown parameters ©. In the steepest
descent approach the parameter vector @=[6,
&, -+, B.17 is adjusted using the increment vector
[AG, A&, ---, AB,]" defined along the negative
gradient direction of J,
A=—7-20 (35)

Although the one-hidden layer model is used in
the present application, it is useful to derive the
gradient of J for the general case, and the result
for the one-hidden-layer model can readily be
obtained as a special case.

Starting from the output layer m of the network
and setting &;= W7, the application of the chain
rule gives rise to,

o] _ o] 9y
owr  ov: OWr (36)

From equation (34)

aJ
ay i

=—(yai—y:) =—6" (37)

Where 67" is called the error signal of the i-
th neuron in the mth layer. From equation (36)

Byt (38)
Thus,
o] _ _ sm.m

Next consider the (m—1)th layer. Using the
chain rule yields :

ST B s R S S (40
Then

e )
and

P = ()

£(2) = a‘%f:) (43)

and g(z;) is the activation of neuron ¢. By de-
fining the error signal for the ith neuron of the
(m—1)th layer as,

o}
ri=g' (21 3 SE Wi (44)

Equation (34) can be rewritten as,

k=81 (45)
Similarly, it can be shown that,
ag*l =—or" (46)

Where 577! is the bias input to neuron ¢ in layer
m—1. By carrying on this procedure, Equations
(44)-(46) can be used as a general algorithm for
updating weights in other layers. Equations (44)-
(46) indicate how the error signals propagate
backwards from the output layer of the network
through the hidden layer to the input layer, hence
the name “BP”.

The steepest-descent minimisation of the error
function defined in Equation (34) produces the
following increments for updating @ (Yildirim,
2004) :

AWE (#) =707 () 2771 () (47)
AbE () =607 (2) (48)

where in the output layer,
07 (t) =yai(t) —yi(t) (49)

and in other layers,

8P(1) =g (2 (1) TP+ () W™ (1=1) (50)

The constants 7, (0<7,<1) and 7, (0<7,<1)
represent the learning rates for the weights and



924 Sahin Yidinm and Ikbal Eski

biases respectively. In practice, a large value of
the learning rate would be preferable, because this
would result in rapid learning. Unfortunately, a
large value of the learning rate can also lead to
oscillation or even.divergence. To help speed up
learning but avoid undue oscillations, a momen-
tum term is usually included so that equations
(47) and (48) become,

AWE(t) =0u07 (1) 27 (1) + awAWE (t—1) (51)
ABP (1) =907 (¢) + AT (t—1) (52)

Where a, and @, are momentum constants, which
determine the effect of past changes of AW (#)
and Ab(f) on the current updating direction in
the weight and the bias space respectively. This
effectively filters out high frequency variations in
the error surface. To summarise, the BP algorithm
updates the weights and thresholds of the net-
works according to,

T8 =WE(t—1) +AWF(¢8) (53)
and
br(t)=b7(t—1) +Ab" (1) (54)

Where the increments AW/Z (¢) and AbI*(¢t) are
given in equations in (51) and (52). The neural
network was trained and tested with five types
of learning algorithms. The algorithms can be
described in the following forms.

3.1.1 Online back propagation algorithm
(Case 1)

Online Back Propagation (OBP), which up-
dates the weights after each pattern is presented to
the network. Back Propagation is the most com-
monly used training algorithm for neural net-
works. The weights are updated as follows,

Awfj(t)=—77;TE“%?—)—+aAwij(t—-l) (55)
Where 7 is the learning rate, and ¢ is the mo-
mentum constant.

3.3.2 Online back propagation random
algorithm (Case 2)
Online Back Propagation with the order of the
input patterns randomized prior to each epoch.

This makes the learning process stochastic and is
preferred in most cases.

3.1.3 Batch back propagation algorithm
(Case 3)
Batch Back Propagation Algorithm (BBP) weight
updates occurring after each epoch.

3.1.4 Delta bar delta algorithm (Case 4)

Delta Bar Delta (DBD) is an adaptive learning
rate method in which every weight has its own
learning rate. The learning rates are updated
based on the sign of the gradient. If the gradient
does not change signs on successive iterations
then the step size is increased linearly. If the
gradient changes signs, the learning rate is de-
creased exponentially. In some cases this method
seems to learn much faster than non-adaptive
methods. Learning rates 7(#) are updated as fol-
lows :

K ifs(t—1)68(t) >0

—on(t) if 65(¢—1)8(t) <0 (56)
0 else

Ap(t) =

Where 8(¢) =0E/0w at time ¢ and & is the ex-
ponential average of past values of §.

S(H=0—0)8#)+65(—1) (57)

3.1.5 Quick propagation algorithm (Case 5)
Quick Propagation Algorithm (QP) is a train-
ing method based on the following assumptions :

(1) E(w) for each weight can be approximat-
ed by a parabola that opens upward

(2) The change in slope of E{(w) for this
weight is not affected by all other weights that
change at the same time. The weight update rule
is

Bl = SW__ Aw(t=1)=9S(t) (58)

t—1)=S()
where S(#) =0E/dw(¢). The numerator is the
derivative of the error with respect to the weight
and [S(¢—1)—S(&)]/Aw(¢—1) is a finite dif-
ference approximation of the second derivative.
Together these approximate Newton’s method for
minimizing a one-dimensional function f(x):
Ax=—f"{x)/f"(x). To avoid taking an infinite



A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control

backward step, or a backward uphill step, a maxi-
mum growth factor parameter u is introduced.
No weight change is allowed to be larger than yu
times the previous weight change. Quick Pro-
pagation has a fixed learning rate parameter, 7,
that needs to be chosen to suit the problem.

4, Simulation

The neural network a feedforward type with
different learning algorithm. It is well known that
the exact inverse kinematics solution of the accu-
rate robot path control is difficult to find. There-
fore, the use of the neural network to find the
robot kinematics parameters avoids the need for
a prior knowledge or assumptions about this
mechanism. The simulation could be divided into
five sub section for describing five cases. Desired
kinematics parameters for following prescribed

925

trajectory of the PUMA type robot five cases.
Desired kinematics parameters for following pre-
scribed trajectory of the PUMA type robot are
given in Table 1.

4.1 Simulation I (Case 1)

In this section, simulation was carried out using
Online Back Propagation (OBP) neural network
for modelling of inverse kinematics of PUMA
type robot. The, theory of the OBP-Neural net-
work is deeply described in section 3.1.1.

The results for both approaches are given in
Table 2 for the case of OBP-Neural network. The
results proved that the OBP-Neural network ap-
proximation is not suitable for modelling PUMA
types kinematics.

4.2 Simulation II (Case 2)
An Online Back Propagation Random (OBPR)

Table 2 Desired and Neural network angular position results of the PUMA 560 robot for Case 1

Brw

)

By

b

B

bio

B

bio

B

o

G

b

73.582117

73.760000

—19.824662

—19.790000

129.754903

129.710000

0.000000

0.000000

69.991844

70.080000

73.579090

73.760000

61.500662

61.400000

—39.350606

—39.230000

164.343842

164.160000

0.000000

0.000000

55.016455

55.060000

61.510835

61.400000

47.652018

47.470000

—48.689952

—48.900000

179.661747

179.180000

0.000000

0.000000

49.124239

49.220000

47.638943

47.470000

34.425725

34.440000

—51.053372

—51.420000

183.681451

184.120000

0.000000

0.000000

47.389090

47.300000

34.466373

34.440000

20.077613

20.080000

—50.476767

—50.260000

182.592768

182.010000

0.000000

0.000000

48.094304

48.250000

20.073847

20.080000

8.841822

8.830000

—44.357177

—44.340000

18.248891

17.210000

0.000000

0.000000

52117124

52.130000

8.836081

8.830000

3.437985

3.320000

—36.995390

— 36.690000

160.934639

160.350000

0.000000

0.000000

56.169283

56.340000

3.439293

3.320000

—0.863167

—1.700000

—25.297784

—25.250000

141.124166

141.000000

0.000000

0.000000

64.170485

64.250000

—0.861409

-~ 1.700000

3.381968

3.330000

—4.323822

—4.210000

114.390282

114.360000

0.000000

0.000000

69.026524

69.050000

3.383112

3.330000

Table 3 Desired and Neural network angular position results of the PUMA 560 robot for Case 2

B

b

Bhowy

b

O

b

O

O

by

o

By

b

73.582117

73.760000

—19.824662

—19.790000

129.754903

129.710000

0.000000

0.000000

69.991844

70.080000

73.579090

73.760000

61.500662

61.400000

—39.350606

—39.230000

164.343842

164.160000

0.000000

0.000000

55.016455

55.060000

61.510835

61.400000

47.652018

47.470000

—48.689952

—48.900000

179.661747

179.180000

0.000000

0.000000

49.124239

49.220000

47.638948

47.470000

34425725

34.440000

—51.053372

—51.420000

183.681451

184.120000

0.000000

0.000000

47.339090

47.300000

34.466373

34.440000

20.077613

20.080000

—50.476767

—50.260000

182.592768

182.010000

0.000000

0.000000

48.094304

48.250000

20.073847

20.080000

8.841822

8.830000

—44.357177

—44.340000

18.248891

17.210000

0.000000

0.000000

52117124

52.130000

8.836081

8.830000

3.437985

3.320000

—36.995390

—36.690000

160.934639

160.350000

0.000000

0.000000

56.169283

56.340000

3.439293

3.320000

—0.863167

—1.700000

—25.297784

—25.250000

141.124166

141.000000

0.000000

0.000000

64.170485

64.250000

—0.861409

—1.700000

3.381968

3.330000

—4.323822

—4.210000

114.390282

114.360000

0.000000

0.000000

69.026524

69.050000

3.383112

3.330000




926

algorithm is employed to update the weights of
the neural network. As depicted in section 3.1.2,
the results of OBPR-Neural network are not ac-
ceptable for calculating the kinematic parameters
of the PUMA robot. The results of the both
approach are given in Table 3.

4.3 Simulation III (Case 3)

In this section, Batch Back Propagation (BBP)
learning rule is used to adjust the weights of the
neural network for comparison. Table 4 indicates
the results of desired and neural network ap-
proach.

4.4 Simulation IV (Case 4)

The section presents the results of, Delta Bar
Delta (DBD) learning algorithm for finding exact
kinematic parameters of the PUMA type robot.

Sahin Yildinm and I kbal Eski

The results of DBD-Neural network are consi-
derably better than the cases of BBP, OBR and
OBP Neural network approach (see Table 5).

4.5 Simulation V {(Case 5)

Quick Propagation (QP) learning algorithm is
used to update the weights of the neural network.
For that reason, the network could be named
QP-Neural network. In this approach, the results
of the neural network are exactly following the
results of desired approach.

Finally, QP-Neural network could be used as
neural predictor of the PUMA type robot in real
time applications. On the other hand, it is ex-
pected that the proposed QP-ANN method will
be considerably faster than the generalized analy-
tical model for robots that do not have a strai-
ghtforward closed-form solution (see Table 6).

Table 4 Desired and Neural network angular position results of the PUMA 560 robot for Case 3

B

b

b

to

B

b

b

G

G

t

b

b

73.525084

73.760000

—19.792821

—19.750000

129.695004

129.710000

0.000000 | 0.000000

70.001358

70.080000

73.523104

73.760000

61.248994

61.400000

—39.288109

—39.230000

163.805406

164.160000

0.000000 | 0.000000

55.064854

55.060000

61.244168

61.400000

47.621977

47.470000

—48.640461

—48.900000

179.319854

179.180000

0.000000 | 0.000000

49.184029

49.220000

47.609410

47.470000

34.611889

34.440000

51090943

—51.420000

183.453362

184.120000

0.000000 | 0.000000

47.411163

47.300000

34.652953

34.440000

20.090462

20.080000

—50.135568

—50.260000

181.964331

182.010000

0.000000 | 0.000000

48.143067

48.250000

20.103024

20.080000

8.834381

8.830000

—44.343374

—44.340000

18.237062

17.210000

0.000000 | 0.000000

52.128698

52.130000

8.833020

8.830000

3218828

3.320000

—36.735299

—36.690000

161.176848

160.350000

0.000000 | 0.000000

56.231682

56.340000

3.214785

3.320000

—1.042621

- 1.700000

—25.281256

—25.250000

141.249989

141.000000

0.000000 : 0.000000

64.247111

64.250000

—1.050617

—1.700000

3.325512

3.330000

~—4.378204

—4.210000

114.358283

114.360000

0.000000 | 0.000000

69.053819

69.050000

3.326043

3.330000

Table 5 Desired and Neural network angular position results of the PUMA 560 robot for Case 4

b

G

bhn

b

O

o

o

G

65NN

b

Bon

b

73.700788

73.760000

—19.792870

—19.790000

129.707215

129.710000

0.000000 | 0.000000

70.075776

70.080000

73.699255

73.760000

61.410220

61.400000

—39.274314

—39.230000

163.907198

164.160000

0.000000 | 0.000000

55.063390

55.060000

61.412342

61.400000

47.460848

47.470000

—48.745389

—48.900000

179.392289

179.180000

0.000000 | 0.000000

49.212819

49.220000

47.443501

47.470000

34.388821

34.440000

—51.058308

—51.420000

182.991986

184.120000

0.000000 | 0.000000

47.362387

47.300000

34.429493

34.440000

20.078258

20.080000

—50.219459

—50.260000

182.883876

182.010000

0.000000 | 0.000000

48.223369

48.250000

20.074645

20.080000

8.826358

8.830000

—44.331187

—44.340000

17.211942

17.210000

0.000000 | 0.000000

52.127689

52.130000

8.809625

8.830000

3.2954%4

3.320000

—36.667034

—36.690000

160.471260

160.350000

0.000000 | 0.000000

56.314065

56.340000

3.297846

3.320000

—1.139768

—1.700000

—25.227837

—25.250000

141.108433

141.000000

0.000000 | 0.000000

64.257171

64.250000

—1.137601

~1.700000

3.330382

3.330000

—4.291308

—4.210000

114.354208

114.360000

0.000000 | 0.000000

69.049262

69.050000

3331647

3.330000




A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control 927

Table 6 Desired and Neural network angular position results of the PUMA 560 robot for Case 5

B b b tho o o

64NN 64D 05NN 051) 66NN 06[)

73.694181 {73.760000 |—19.791702|—19.7900001 129.709856 | 129.710000

0.000000 {0.000000 | 70.079939 | 70.080000 | 73.706879 | 73.760000

61.409799 |61.400000 |—39.276189|—39.230000| 163.965698 | 164.160000

0.000000 | 0.000000 | 55.054047 | 55.060000 | 61.389241 | 61.400000

47.391736 |47.470000 |—48.656978|—48.900000| 179.015866 |179.180000

0.000000 | 0.000000 | 49.230765 | 49.220000 | 47.418487 | 47.470000

34.371468 | 34.440000 |—51.250877~51.420000 | 183.150520 |184.120000

0.000000 | 0.000000 | 47.421525 | 47.300000 | 34.394114 | 34.440000

20.112724 |20.080000 |—50.115327|—50.260000| 181.640313 |182.010000

0.000000 | 0.000000 | 48.140810 | 48.250000 | 20.123819 | 20.080000

8.833952 | 8.830000 |—44.335007—44.340000| 17.499646

17.210000

0.000000 | 0.000000 | 52.129205 | 52.130000} 8.834512) 8.830000

2.985874

3.320000 |—37.227865|—36.690000| 160.543932 | 160.350000

0.000000 | 0.000000 | 56.333207 | 56.340000 | 2.988753| 3.320000

—0.923795 +1.700000 |—25.250669|—25.250000| 141.132699 | 141.000000

0.000000 | 0.000000 | 64.248849 | 64.250000 —0.918493 |-1.700000

3.332300 | 3.330000

—4.210000) —4.210000|114.335754 | 114.360000

0.000000 |0.000000 | 69.048959 | 69.050000 | 3.331194{ 3.330000

5. Conclusion and Discussion

In this study, five types of neural network pre-
dictor strategies have been used and developed
inverse position controller. The PUMA robot has
configuration, in so far as its last three adjacent
joint axes intersect. Thus, the PUMA 560 robot
has an efficient closed-form inverse kinematic so-
lution. However, disadvantages can be found ith
this style of robot. This geometry may not be
appropriate for applications requiring the arm to
be able to reach a desired position in more than
one way. In addition, the joints of the robots
without wrist offsets do not have complete rota-
tional capabilities. These robots usually do not
have closed-form inverse kinematic solution. Thus,
QP-Neural network method can be implemented
as a single-stage network. The proposed QP-
Neural network structure previously described
was shown to produce better training perform-
ance and adaptability than the other structures.
Structural and learning parameters of these Cases
are detailed in Table 7. Root Mean Square Errors
(RMSEs) for these approaches are also given in
Table 8.

The proposed iterative strategy provides a su-

perior alternative for solving the inverse kine- .

matics problem of manipulators for which it is
difficult to derive the kinetic model or to obtain
the closed-form solution. The strategy can gener-
ate the solution from measurement of the physical

Table 7 Structural and training parameters of the
feedforward neural networks with different
learning algorithms

NN Type| 7 7 N ny | ng | no AF
OBP [0.05/0.5/1000000| 3 | 10| 6 |Logistic
OBPR |0.05]0.5|1000000| 3 | 10| 6 |Logistic
BBP |0.05|0.5(1000000! 3 | 10| 6 !|Logistic
DBD [0.05|0.5;1000000| 3 | 10| 6 |Logistic
QP 0.05; 0 {1000000| 3 | 10| 6 |Logistic

Table 8 RMS Errors for all cases

Cases Max RMS Error
Case 1 0.291278
Case 2 0.230304
Case 3 0.224622
Case 4 0.294192
Case 5 0.21345

location of the manipulator in both the cartesian
and the inbuilt learning abilities of the ANNs.

Acknowledgments
This research results consisted of part of project
DPT-05-06. The authors would like to express
their thanks to Erciyes University for supporting
this project.

References

Aspragathos, N. A. and Dimitros, J. K., 1998,



928 Sahin Yidwm and Ikbal Eski

“A Comparative Study of Three Methods for
Robot Kinematics,” IEEE Transcations on Sys-
tems Man and Cybernetics Part B-Cybernetics,
Vol. 28, No. 2, pp. 135~ 145.

Bravo, F. J. A,, 1990, “Multi Layer Back Pro-
pagation Network for Learning The Forward and
Inverse Kinematic Equations,” In Proceedings of
The International JCNNs, Washington D.C,,
Vol. 2, pp. 319~322.

Choi, K.B., 2003, “Kinematic Analysis and
Optimal Design of 3-PPR Planar Parallel
Manipulator,” KSME [International Journal,
Vol. 17, No. 4, pp. 528 ~537.

Craig, J.J., 1989, Introduction to Robotics :
Mechanics and Control, Addison Wesley Pub-
lishing Company.

Guez, A. and Ahmad, Z., 1989, “Accelerated
Convergence in The Inverse Kinematics Via Multi-
layer Feed Forward Neural Networks,” In Pro-
ceeding of The International JCNNs, Washington
D. C., Vol. 2, pp. 341~347.

Guo, J. and Cherhassky, V., 1989, “A Solution
to The Inverse Kinematic Problem in Robotics
Using Neural Network Processing,” In Proceed-
ing of The International JCNNs, Washington D.
C., Vol. 2, pp. 299~304.

Ha, 1. C. and Han, M. C., 2004, “A Robust
Control with a Neural Network Structure for

Uncertain Robot Manipulator,” KSME Interna-
tional Journal, Vol. 18, No. 11, pp. 1916~1922.

Jin, T. S. and Lee, J. -M., 2003, “The Position/
Orientation Determination of Mobile-Task Ro-
bot Using an Active Calibration Scheme,” KSME
International Journal, Vol. 17, No. 10, pp. 1431~
1442,

Kang, T., Choi, H. and Kim, M., 2003, “Devel-
opment of Anthropomorphic Robot Hand SKK
Robot Hand 1,” KSME International Journal,
Vol. 17, No. 2, pp. 230~238.

Lee, J., Lim, J., Park, C. W. and Kim, S., 2004,
“Adaptive Model Reference Control Based on
Tagaki-Sugeno Fuzzy Models with Applications
to Flexible Joint Manipulators,” KSME Interna-
tional Journal, Vol. 18, No. 3, pp. 337~ 346.

Pashkevich, A., 1997, “Real-Time Inverse Kine-
matics for Robots with Offset and Reduced
Wrist,” Control Engineering Practice, Vol. 5, No.
10, pp. 1443~ 1450.

Tchon, K., 2000, “Hyperbolic Normal Forms
for Manipulator Kinematics,” IEEE Transac-
tions on Robotics and Automation, Vol. 16, No. 2,
pp. 196~201.

Yildirim, §., 2004, “Adaptive Robust Neural
Controller for Robots,” Robotics and Auton-
omous Systems, Vol. 46, No. 3, pp. 175~ 184.



