DOI QR코드

DOI QR Code

Ginsentology I: Differential Ca2+ Signaling Regulations by Ginsenosides in Neuronal and Non-neuronal cells

  • Lee, Jun-Ho (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
  • Published : 2006.06.01

Abstract

One of the various signaling agents in the animal cells is the simple ion called calcium, $Ca^{2+}$.$Ca^{2+}$ controls almost everything that animals do, including fertilization, secretion, metabolism, muscle contractions, heartbeat, learning, memory stores, and more. To do all of this, $Ca^{2+}$ acts as an intracellular messenger, relaying information within cells to regulate their activity. In contrast, the maintenance of intracellular high $Ca^{2+}$ concentrations caused by various excitatory agents or toxins can lead to the disintegration of cells (necrosis) through the activity of $Ca^{2+}$-sensitive protein-digesting enzymes. High concentrations of calcium have also been implicated in the more orderly programs of cell death known as apoptosis. Because this simple ion, acts as an agent for cell birth, life and death, to coordinate all of these functions, $Ca^{2+}$ signalings should be regulated precisely and tightly. Recent reports have shown that ginsenosides regulate directly and indirectly intracellular $Ca^{2+}$ level with differential manners between neuronal and non-neuronal cells. This brief review will attempt to survey how ginsenosides differentially regulate intracellular $Ca^{2+}$ signaling mediated by various ion channels and receptor activations in neuronal and non-neuronal cells.

Keywords

References

  1. Jeong, S. M. and Nah, S. Y.: Ginseng and ion channels: Are ginsenosides, active component of Panax ginseng, differential modulator of ion channels.: J.Ginseng Res. 29, 19-26 (2005) https://doi.org/10.5142/JGR.2005.29.1.019
  2. Nah, S. Y., Park, H. J. and McCleskey, E. W.: A trace component of ginseng that inhibit $Ca^{2+}$ channels through a pertussis toxin-sensitive G protein. Proc Natl Acad Sci USA 92, 8739-8743 (1995)
  3. Nah, S.Y. and McCleskey, E. W.: Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but different receptor, as ${\mu}-type$ opioids. J Ethnopharmacol 42, 45-51 (1994) https://doi.org/10.1016/0378-8741(94)90022-1
  4. Kim, H. S., Lee, J. H., Koo, Y. S. and Nah, S. Y.: Effects of ginsenosides on $Ca^{2+}$ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res Bull. 46, 245-251 (1998) https://doi.org/10.1016/S0361-9230(98)00014-8
  5. Choi, S., Jung, S. Y., Kim, C. H., Kim, H. S., Rhim, H., Kim, S. C. and Nah, S. Y.: Effect of ginsenosides on voltagedependent $Ca^{2+}$ channel subtypes in bovine chromaffin cells. J. Ethnopharmacol. 74, 75-81 (2001) https://doi.org/10.1016/S0378-8741(00)00353-6
  6. Rhim, H., Kim, H., Lee, D. Y., Oh, T. H. and Nah, S. Y.: Ginseng and ginsenoside $Rg_3$, a newly identified active ingredient of ginseng, modulate $Ca^{2+}$ channel currents in rat sensory neurons. Eur. J. Pharmacol. 436, 151-158 (2002) https://doi.org/10.1016/S0014-2999(01)01613-2
  7. Lee, J. H., Jeong, S. M., Kim, J. H., Lee, B. H., Yoon, I. S., Lee, J. H.,Choi, S. H., Lee, S. M., Park, Y. S., Lee, J. H., Kim, S. H., Kim, H. C., Lee, B. Y. and Nah, S. Y.: Effects of ginsenosides and their metabolites on voltage-dependent $Ca^{2+}$ channel subtypes. Mol. Cells 21, 52-62 (2006)
  8. Jeong, S. M., Lee, J. H., Kim, J. H, Lee, B. H., Yoon, I. S., Lee, J. H., Kim, D. H., Rhim, H., Kim, Y. and Nah, S. Y.: Stereospecificity of ginsenoside $Rg_3$ action on ion channels. Mol. Cells 18, 383-389 (2004)
  9. Lee, J. H., Jeong, S. M., Kim, J. H., Lee, B. H., Yoon, I. S., Lee, J. H., Choi, S. H., Kim, D. H., Rhim, H., Kim, S. S., Kim, J. I., Jang, C. G., Song, J. H. and Nah, S. Y.: Characteristics of Ginsenoside $Rg_3$-Mediated Brain $Na^+$ Current Inhibition Mol Pharmacol. 68, 1114-1126 (2005) https://doi.org/10.1124/mol.105.015115
  10. Changeux, J. and Edelstein, S. J.: Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Curr. Opin. Neurobiol. 11, 369-377 (2001) https://doi.org/10.1016/S0959-4388(00)00221-X
  11. Tachikawa, E., Kudo, T., Kashimoto, T. and Takashshi, E.: Ginseng saponins reduce acetylcholine-evoked $Na^+$ influx and catecholamine secretion in bovine adrenal chromaffin cells. J Pharmacol Exp Ther. 273, 629-636 (1995)
  12. Campos-Caro, A., Smillie, F. I., Del Toro, E. D., Rovira, J. C., Vicente-Agullo, F., Chapuli, J., Juiz, J. M., Sala, S., Sala, F., Ballesta, J. and Criado, M.: Neuronal nicotinic acetylcholine receptors on bovine chromaffin cells: cloning, expression, and genomic organization of receptor subunits. J. Neurochem. 68, 488-497 (1997) https://doi.org/10.1046/j.1471-4159.1997.68020488.x
  13. Choi, S., Jung, S. Y., Lee, J. H., Sala, F., Criado, M., Mulet, J., Valor L. M., Sala, S., Engel, A. G. and Nah, S. Y.: Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 442, 37-45 (2002) https://doi.org/10.1016/S0014-2999(02)01508-X
  14. Sala, F., Mulet, J., Choi, S., Jung, S. Y., Nah, S. Y., Rhim, H., Valor, L. M., Criado, M. and Sala, S.: Effects of ginsenoside $Rg_2$ on human neuronal nicotinic acetylcholine receptors. J. Pharm. Exp. Ther. 301, 1052-1059 (2002) https://doi.org/10.1124/jpet.301.3.1052
  15. Peters, J. A., Hales, T. G. and Lambert, J. J.: Molecular determinants of single channel conductance and ion selectivity in the Cys-loop family: insight from the 5-HT3 receptor. Trends Pharmacol. Sci. 26, 587-594 (2005) https://doi.org/10.1016/j.tips.2005.09.011
  16. Choi, S., Lee, J. H., Oh, S., Rhim, H., Lee, S. M. and Nah, S. Y.: Effects of ginsenoside $Rg_2$ on the $5-HT_3$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 15, 108-113 (2003)
  17. Lee, B. H., Jeong, S. M., Lee, J. H., Kim, D. H., Kim, J. H., Kim, J. I., Shin, H. C., Lee, S. M. and Nah, S. Y.: Differential effect of ginsenoside metabolites on the $5-HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 17, 51-56 (2004)
  18. Camilleri, M., Northcutt, A. R., Kong, S., Dukes, G. E., McSorley, D. and Mangel, A. W.: Efficacy and safety of alosetron in women with irritable bowel syndrome: a randomised, placebo-controlled trial. Lancet. 355, 1035-1040 (2000) https://doi.org/10.1016/S0140-6736(00)02033-X
  19. Polati, E., Verlato, G., Finco, G., Monsaner, W., Grosso, S., Gottin, L., Pinaroli, AM., and Ischia, S.: Ondansetron versus metoclopramide in the treatment of postoperative nausea and vomiting. Anesth. Analg. 85, 395-399 (1997) https://doi.org/10.1097/00000539-199708000-00027
  20. Min, K. T., Koo, B. N., Kang, J. W., Bai, S. J., Ko, S. R. and Cho, Z. H.: Effect of ginseng saponins on the recombinant serotonin type 3A receptor expressed in xenopus oocytes: implication of possible application as an antiemetic. J. Altern. Complement Med. 9, 505-510 (2003) https://doi.org/10.1089/107555303322284794
  21. Kim, J. H., Lee, J. H., Jeong, S. M., Lee, B. H., Yoon, I. S., Choi, S. H. and Nah, S.Y.: Effect of ginseng saponins on a rat visceral hypersensitivity model. Biol. Pharm. Bull. 28, 2120-2124 (2005a) https://doi.org/10.1248/bpb.28.2120
  22. Kim, J. H., Yoon, I. S., Lee, B. H., Choi, S. H., Lee, J. H., Jeong, S. M., Kim, S. C., Park, C. K., Lee, S. M. and Nah, S. Y.: Effects of Korean red ginseng extract on cisplatininduced nausea and vomiting. Arch. Pharm. Res. 28, 413- 420 (2005b) https://doi.org/10.1007/BF02977670
  23. Dingledine, R., Borges, K., Bowie, D. and Traynelis, S. F.: Glutamate receptor ion channels. Pharmacol. Rev. 51, 7-62 (1999)
  24. Kim, Y. C., Kim, S. R., Markelonis, G. J. and Oh, T. H.: Ginsenosides $Rb_1\;and\;Rg_3$ protect cultured rat cortical cells from glutamate-induced neurodegeranation. J. Neurosci. Res. 53, 426-432 (1998) https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  25. Seong, Y. H., Shin, C. S., Kim, H. S. and Baba, A.: Inhibitory effect of ginseng total saponins on glutamate-induced swelling of cultured atrocytes. Biol. Pharm. Bull. 18, 1776-1778 (1995) https://doi.org/10.1248/bpb.18.1776
  26. Abe, K., Cho, S. I., Kitagawa, I., Nishiyama, N. and Saito, H.: Differential effects of ginsenoside $Rb_1$ and malonylginsenoside $Rb_1$ on long-term potentiation in the dentate gyrus of rats. Brain Res. 649, 7-11 (1994) https://doi.org/10.1016/0006-8993(94)91042-1
  27. Yoon, S. R., Nah, J. J., Shin, Y. H., Kim, S. K., Nam, K. Y., Choi, H. S., Nah, S. Y.: Ginsenosides induce differential antinocicepion and inhibit substance P induced-nociceptive response in mice. Life Sci. 62, PL319-PL325 (1998) https://doi.org/10.1016/S0024-3205(98)00168-4
  28. Nah, J. J., Choi, S., Kim, Y. H., Kim, S. C., Nam, K. Y., Kim, J. K. and Nah, S. Y.: Effect of spinally administered ginseng total saponin on capsaicin-induced pain and excitatory amino acid-induced nociceptive responses. J. Ginseng Res. 23, 38-43 (1999)
  29. Lee, J. H., Kim, S. H., Kim, D., Hong, H. N. and Nah, S. Y.: Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainate-induced neurotoxicity in rat hippocampus. Neurosci. Lett. 325, 129-133 (2001) https://doi.org/10.1016/S0304-3940(02)00256-2
  30. Chu, G. X., and Chen, X.: Protective effect of ginsenosides on acute cerebral ischemia-reperfusion injury of rats. China J Pharmacol Toxicol. 3, 18-23 (1989)
  31. Chu, G. X., and Chen, X. Anti-lipid peroxidation and protection of ginsenosides against cerebral ischemia-reperfusion injury of rats. Acta Pharmacol Sin. 11, 119-123 (1990)
  32. Lim, J. H., Wen, T. C., Matsuda, S., Tanaka, J., Maeda, J., Peng, H., Aburaya, J., Ishihara, K. and Sakanaka, M. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci. Res. 28, 191-200 (1997) https://doi.org/10.1016/S0168-0102(97)00041-2
  33. Lee, J. H., Kim, S. H., Kim D, Hong, H. N. and Nah, S. Y. (2001) Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainate-induced neurotoxicity in rat hippocampus. Neurosci. Lett. 325, 129-133 (2001) https://doi.org/10.1016/S0304-3940(02)00256-2
  34. Choi, S., Rho, S. H., Jung, S. Y., Kim, S. C., Park, C. S. and Nah, S. Y.: A novel activation of $Ca^{2+}$-activated $Cl^-$ channel in Xenopus oocytes by ginseng saponins: evidence for the involvement of phospholipase C and intracellular $Ca^{2+}$ mobilization. British J. Pharmacol. 132, 641-648 (2001) https://doi.org/10.1038/sj.bjp.0703856
  35. Choi, S., Kim, H. J., Ko, Y. S., Jeong, S. W., Kim, Y. I., Simonds, W. F., Oh, j. W. and Nah, S. Y.: $G{\alpha}_{q/11}$ coupled to mammalian $PLC{\beta}3$-like enzyme mediates the ginsenoside effect on $Ca^{2+}$-activated $Cl^-$ current in the Xenopus oocyte. J. Biol. Chem. 276, 48797-48802 (2001) https://doi.org/10.1074/jbc.M104346200
  36. Jeong, S. M., Lee, J. H., Kim, S., Rhim, H., Lee, B.H., Kim, J. H., Oh, J. W., Lee, S. M. and Nah, S. Y. Ginseng saponins induce store-operated calcium entry in Xenopus oocytes. Br. J. Pharmacol. 142, 585-593 (2004) https://doi.org/10.1038/sj.bjp.0705797
  37. Berridge, M. J., Bootman, M. D. and Lipp, P.: Calcium – a life and death signal. Nature, 395, 645-668 (1998) https://doi.org/10.1038/27094

Cited by

  1. Enhancement of low molecular weight ginsenosides from low-quality ginseng through ultra-high-pressure and fermentation processes vol.237, pp.3, 2013, https://doi.org/10.1007/s00217-013-2007-9