DOI QR코드

DOI QR Code

A Study on the Mechanisms by Which the Aqueous Extract of Inonotus obliquus Induces Apoptosis and Inhibits Proliferation in HT-29 Human Colon Cancer Cells

차가버섯 물추출물의 대장암세포 증식억제 및 Apoptosis 유도기전 연구

  • 김은지 (한림대학교 실버생물산업기술연구센터) ;
  • 이용진 ((재)춘천바이오산업진흥원) ;
  • 신현경 (한림대학교 실버생물산업기술연구센터) ;
  • 윤정한 (한림대학교 실버생물산업기술연구센터)
  • Published : 2006.06.01

Abstract

The mushroom Inonotus obliquue (IO) has been traditionally used for the treatment of gastrointestinal cancer in Russia, Poland, and most of Baltic countries. To explore the possibility that IO has chemoprevention effects, we examined whether or not the aqueous extract of IO inhibits HT-29 cell growth and investigated tile mechanism for this effect. Cells were incubated in the presence of increasing concentrations of the aqueous extract of IO. The extract substantially inhibited the viable HT-29 cell number in a dose-dependent manner and inhibited 5-bromo-2'-deoxyuridine incorporation into DNA of HT-29 cells. Annexin-V staining followed by flow cytometry revealed that the extract induced apoptosis of HT-29 cells in a dose-dependent manner. Western blot analysis of total cell lysates revealed that the extract induced cleavage of caspase-8, -9 and -3 and poly (ADP-ribose) polymerase, but did not affect the protein levels of Bax and Bcl-2. In addition, the extract dose-dependently increased the activity of caspase-8, -9 and -3. We have demonstrated that the aqueous extract of IO inhibits cell proliferation and induces apoptosis in HT-29 cells, which may be mediated by its ability to activate the caspase pathway.

차가버섯(Inonotus obliquus)은 한랭한 삼림지대에서 자라는 자작나무에 자생하는 버섯으로, 항종양 및 항돌연변이 활성이 있는 것으로 보고되고 있으나, 차가버섯의 항암기전에 대해 밝혀진 바가 없어, 본 연구에서는 인체의 대장암에서 유래한 HT-29 세포를 사용하여 차가버섯 물추출물의 대장암세포 증식 억제기전을 밝히고자 하였다. 차가버섯을 열수추출하여 냉동 건조하여 얻은 물추출물을 HT-29 세포 배양액에 여러 농도($0{\sim}100{\mu}g/mL$)로 첨가하여 세포의 증식에 미치는 영향을 조사하였다. 세포의 증식은 차가버섯 추출물 농도가 증가할수록 현저히 감소하였다. 차가버섯 물추출물 처리 농도에 비례하여 세포의 DNA합성은 감소하였고, apoptotic cell의 수는 현저히 증가하였다. Apoptosis의 주요한 조절 인자인 Bcl-2 family 단백질 수준은 차가버섯에 의해 변화하지 않았으나, cleaved caspase-8, -9, -3의 단백질 수준은 차가버섯에 의해 증가하였다. Caspase-8, -9, -3의 활성도 모두 차가버섯에 의해 유의적으로 증가하였다. Caspase-3의 표적 단백질로 세포의 생존에 결정적인 역할을 하는 PARP단백질의 분해도 차가버섯에 의해 현저히 증가하였다. 이 결과로부터 차가버섯 물추출물이 DNA합성을 억제하고 apoptosis를 유도하여 대장암 세포의 증식을 억제하고, caspase 경로의 활성을 증가하므로써 apoptosis를 유도한다는 결론을 내릴 수 있다. 또한 이 결과는 차가버섯 물추출물을 대장암의 예방이나 치료에 사용할 수 있는 가능성을 제시한다.

Keywords

References

  1. Wasser SP, Weis AL. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19: 65-96
  2. Bulatov PK, Berezina MP, Jakimov PA. 1959. Tsaga ii ee letsebnoje primenie pri rake IV. Stadii, Leningarad. p 326
  3. Shivrina AN. 1967. Chemical characteristic of compounds extracted from Inonotus obliquus. Chem Abstr 66: 17271- 17279
  4. Kahlos K, Kangas L, Hitunen R. 1987. Antitumor activity of some compounds and fractions from an n-butane extract of Inonotus obliquus. Acta Pharm Fenn 96: 33-40
  5. Mizuno T, Zhuang C, Abe K, Okamoto H, Kiho T, Ukai S, Leclerc S, Meijer L. 1999. Antitumor and hypoglycemic activities of polysaccharides from the Sclerotia and mycelia of Inonotus obliquus (Pers.: Fr.) Pil. (Aphyllophoromy-cetidae). Int J Med Mushrooms 1: 301-316 https://doi.org/10.1615/IntJMedMushr.v1.i4.20
  6. Ham SS, Oh SW, Kim YK, Shin KS, Chang HY, Chung GH. 2003. Antioxidant and genotoxic inhibition activity of ethanol extract from the Inonotus obliquus. J Korean Soc Food Sci Nutr 32: 1071-1075 https://doi.org/10.3746/jkfn.2003.32.7.1071
  7. Ham SS, Oh SW, Kim YK, Shin KS, Chang HY, Chung GH. 2003. Antimutagenic and cytotoxic effects of ethanol extract from the Inonotus obliquus. J Korean Soc Food Sci Nutr 32: 1088-1094 https://doi.org/10.3746/jkfn.2003.32.7.1088
  8. Burczyk J, Gawron A, Slotwinska M, Smietana B, Terminska K. 1996. Antimitotic activity of aqueous extracts of Inonotus obliquus. Boll Chim Farm 135: 306-309
  9. Rzymowska J. 1998. The effect of aqueous extracts from Inonotus obliquus on the mitotic index and enzyme activities. Boll Chim Farm 137: 13-15
  10. Hwang YJ, Noh GW, Kim SH. 2003. Effect of Inonotus obliquus extracts on proliferation and caspase-3 activity in human gastro-intestinal cancer cell lines. Korean J Nutr 36: 18-23
  11. Hengartner MO. 2000. The biochemistry of apoptosis. Nature 407: 770-777 https://doi.org/10.1038/35037710
  12. Reed JC. 1998. Dysregulation of apoptosis in cancer. Cancer J Sci Am 4 (Suppl): S8-S14
  13. Korsmeyer SJ. 1995. Regulators of cell death. Trends Genet 11: 101-105 https://doi.org/10.1016/S0168-9525(00)89010-1
  14. Debatin KM. 2004. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53: 153-159 https://doi.org/10.1007/s00262-003-0474-8
  15. Palombo JD, Ganguly A, Bistrian BR, Menard MP. 2002. The antiproliferative effects of biologically active isomers of conjugated linoleic acid on human colorectal and pro-static cancer cells. Cancer Lett 177: 163-172 https://doi.org/10.1016/S0304-3835(01)00796-0
  16. Arends MJ, Wylie AH. 1991. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 32: 223-254 https://doi.org/10.1016/B978-0-12-364932-4.50010-1
  17. Mesner P, Budihardjo I, Kaumann SH. 1997. Chemotherapy-induced apoptosis. Adv Pharmacol 41: 461-499 https://doi.org/10.1016/S1054-3589(08)61069-8
  18. Denizot F, Lang R. 1986. Rapid colorimetric assay for cell growth and survival modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89: 271-277 https://doi.org/10.1016/0022-1759(86)90368-6
  19. Porstmann T, Ternynck T, Avrameas S. 1985. Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: an enzyme immunoassay for the assessment of the lymphoid cell proliferative response. J Immunol Methods 82: 169-179 https://doi.org/10.1016/0022-1759(85)90236-4
  20. Heil J, Reifferscheid G. 1992. Detection of mammalian carcinogens with an immunological DNA synthesis-inhibition test. Carcinogenesis 13: 2389-2394 https://doi.org/10.1093/carcin/13.12.2389
  21. Latt SA, Stetten G. 1976. Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J Histochem Cytochem 24: 24-33 https://doi.org/10.1177/24.1.943439
  22. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. 1995. A novel assay for apoptosis. flow cytometric detection of phosphatidylserine expression on eraly apoptotic cells using fluorescerin labelled Annexin V. J Immunol Methods 184: 39-51 https://doi.org/10.1016/0022-1759(95)00072-I
  23. Kim EJ, Houlthuizen PE, Park HS, Ha YL, Jung KC, Park JHY. 2002. Trans-10,cis-12-conjugated linoleic acid inhibits Caco-2 colon cancer cell growth. Am J Physiol Gastrointest Liver Physiol 283: G357-G367 https://doi.org/10.1152/ajpgi.00495.2001
  24. Kim EJ, Lee YJ, Shin HK, Park JHY. 2005. Induction of apoptosis by the aqueous extract of Rubus coreanum in HT-29 human colon cancer cells. Nutrition 21: 1141-1148 https://doi.org/10.1016/j.nut.2005.02.012
  25. Jung JI, Lim SS, Choi HJ, Cho HJ, Shin HK, Kim EJ, Chung WY, Park KK, Park JHY. 2006. Iosliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J Nutr Biochem in press
  26. Ikekawa T, Uehara N, Maeda Y, Nakanishi M, Fukuoka F. 1969. Antitumor activity of aqueous extracts of edible mushrooms. Cancer Res 29: 734-735
  27. Mizuno T. 1999. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int J Med Mushrooms 1: 9-29 https://doi.org/10.1615/IntJMedMushrooms.v1.i1.20
  28. Wasser SP. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60: 258-274 https://doi.org/10.1007/s00253-002-1076-7
  29. Frankfurt OS, Krishan A. 2003. Apoptosis-based drug screening and detection of selective toxicity to cancer cells. Anticancer Drugs 14: 555-561 https://doi.org/10.1097/00001813-200308000-00008
  30. Lowe SW, Lin AW. 2000. Apoptosis in cancer. Carcinogenesis 21: 485-495 https://doi.org/10.1093/carcin/21.3.485
  31. Farrow SN, Brown R. 1996. New members of the Bcl-2 family and their protein partners. Curr Opin Genet Dev 6: 45-49 https://doi.org/10.1016/S0959-437X(96)90009-X
  32. Thornberry N, Lazebnik Y. 1998. Caspase: enemies within. Science 281: 1312-1316 https://doi.org/10.1126/science.281.5381.1312
  33. Slee EA, Adrain C, Martin SJ. 1999. Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6: 1067-1074 https://doi.org/10.1038/sj.cdd.4400601
  34. Ye M, Liu JK, Lu ZX, Zhao Y, Liu SF, Li LL, Tan M, Weng XX, Li W, Cao Y. 2005. Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, inhibits tumor cell growth by inducing apoptosis in vitro. FEBS Lett 579: 3437-3443 https://doi.org/10.1016/j.febslet.2005.05.013
  35. Jo EH, Kim SH, Ra JC, Kim SR, Cho SD, Jung JW, Yang SR, Park JS, Hwang JW, Aruoma OI, Kim TY, Lee YS, Kang KS, Kang KS. 2005. Chemopreventive properties of the ethanol extract of chinese licorice (Glycyrrhiza uralensis) root: induction of apoptosis and G1 cell cycle arrest in MCF-7 human breast cancer cells. Cancer Lett 230: 239- 247 https://doi.org/10.1016/j.canlet.2004.12.038
  36. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. 1999. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15: 269-290 https://doi.org/10.1146/annurev.cellbio.15.1.269
  37. Ashkenazi A, Dixit VM. 1998. Death receptor: signaling and modulation. Science 281: 1305-1308 https://doi.org/10.1126/science.281.5381.1305
  38. Nijhawan LP, Budihardjo D, Srinivasula I, Ahmad SM, Alnemri M, Wang X. 1997. Cytochrome c and dATP- dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489 https://doi.org/10.1016/S0092-8674(00)80434-1
  39. Baker SJ, Reddy EP. 1998. Modulation of life and death by the TNF receptor superfamily. Oncogene 17: 3261-3270 https://doi.org/10.1038/sj.onc.1202568

Cited by

  1. Induction of apoptosis by laminarin, regulating the insulin-like growth factor-IR signaling pathways in HT-29 human colon cells vol.30, pp.4, 2012, https://doi.org/10.3892/ijmm.2012.1084
  2. Composition and biological activity of triterpenes and steroids from Inonotus obliquus (chaga) vol.62, pp.4, 2016, https://doi.org/10.18097/pbmc20166204369
  3. Inhibition Effect of Cell Proliferation and Apoptosis by Inonotus obliquus in Human Glioblastoma U-87 MG Cells vol.42, pp.7, 2013, https://doi.org/10.3746/jkfn.2013.42.7.1022
  4. Analysis of Mineral, Amino Acid and Vitamin Contents of Fruiting Body of Sparassis crispa. vol.17, pp.9, 2007, https://doi.org/10.5352/JLS.2007.17.9.1290
  5. Induction of Apoptosis Signaling by a Glycoprotein of Capsosiphon fulvescens in AGS Cell vol.44, pp.3, 2011, https://doi.org/10.5657/KFAS.2011.0216
  6. Anticancer Activity of Methyl Gallate in RC-58T/h/SA#4 Primary Human Prostate Cancer Cells vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.367
  7. Cordycepin Induced Apoptosis via Intracellular Ca2+Modulation and Mitochondrial Dysfunction in Human Prostate Cancer PC-3 Cells vol.21, pp.3, 2011, https://doi.org/10.5352/JLS.2011.21.3.451
  8. Anti-carcinogenic actions of glycoprotein conjugated with isoflavones from submerged-liquid culture of Agaricus blazei mycelia through reciprocal expression of Bcl-2 and Bax proteins vol.15, pp.4, 2014, https://doi.org/10.12729/jbr.2014.15.4.200
  9. Induction of Apoptosis Signaling by Glycoprotein ofCapsosiphon fulvescensin Human Gastric Cancer (AGS) Cells vol.64, pp.5, 2012, https://doi.org/10.1080/01635581.2012.683228
  10. Chemical composition and biological activity of triterpenes and steroids of chaga mushroom vol.10, pp.1, 2016, https://doi.org/10.1134/S1990750816010108
  11. Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells vol.39, pp.8, 2010, https://doi.org/10.3746/jkfn.2010.39.8.1119
  12. Induction of Apoptosis by Piceatannol in YD-15 Human Oral Cancer Cells vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.975
  13. Laminarin-induced apoptosis in human colon cancer LoVo cells vol.7, pp.5, 2014, https://doi.org/10.3892/ol.2014.1952
  14. 보라우무 메탄올추출물의 HT-29 대장암세포 증식 억제 효과 vol.36, pp.4, 2006, https://doi.org/10.3746/jkfn.2007.36.4.431
  15. 후추의 주요 성분인 Piperine의 대장암세포 세포사멸 유도 효과 vol.38, pp.4, 2006, https://doi.org/10.3746/jkfn.2009.38.4.442