DOI QR코드

DOI QR Code

Effect of Mulberry Leaf Extract Supplement on Blood Glucose, Glycated Hemoglobin and Serum Lipids in Type II Diabetic Patients

상엽추출물이 제2형 당뇨병 환자의 혈당, 당화혈색소 및 혈청지질에 미치는 영향

  • Yang, Jung-Hwa (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji-Sook (Dept. of Food Science and Nutrition, Pusan National University)
  • 양정화 (부산대학교 식품영양학과) ;
  • 한지숙 (부산대학교 식품영양학과)
  • Published : 2006.06.01

Abstract

The purpose of this study was to assess the effects of mulberry leaf extract supplement on blood glucose, glycated hemoglobin ($HbA_{1C}$) and serum lipids in type II diabetic patients, and also to assess safety in liver function after mulberry leaf extract supplement. The study was a randomized placebo-controlled trial and total 23 type II diabetic patients were divided into a MLE group taking 1,000 mg mulberry leaf extract supplement per day as experimental group and a placebo group taking 1,000 mg cellulose Powder supplement per day for 12 weeks. After 2 weeks of wash-out period, fasting blood glucose, $HbA_{1C}$, serum lipid levels and liver function test were analyzed before and after treatment of 12 weeks. The general baseline characteristics, nutrient intake and life style factors of study subjects were similar between two groups during intervention. The concentrations of fasting blood glucose and $HbA_{1C}$ (p<0.05) decreased significantly after mulberry leaf extract supplement in MLE group, while there were no changes found in placebo group. We also found it showed that mulberry leaf extract supplement for 12 weeks decreased significantly (p<0.05) the fasting blood glucose in poor fasting blood glucose group and $HbA_{1C}$ concentration in poor $HbA_{1C}$ group. The concentrations of LDL-cholesterol (p<0.05) and triglyceride (p<0.01) decreased significantly in MLE group after 12 weeks of taking the supplement, while there were no changes found in placebo group. The mulberry leaf extract supplement for 12 weeks didn't show hepatotoxicity. These results suggested that mulberry leaf extract supplement could be effective in improving fasting blood glucose and $HbA_{1C}$ levels in the diabetic patients, specially having high concentrations of fasting blood glucose and $HbA_{1C}$ among type II diabetic patients.

본 연구는 상엽추출물의 섭취가 당뇨병 환자의 혈당, 당화혈 색소 및 혈청지질에 미치는 영향을 조사하고, 체내 간기능에서의 안전성도 검증하기 위하여 당뇨병 환자에게 12주간 1,000 mg의 상엽 추출물을 섭취시켜 전 후 차이를 비교하였으며 그 결과는 다음과 같다. 상엽군은 체중이 실험 전 $58.6{\pm}9.2kg$에서 실험 후 $58.8{\pm}9.1kg$으로 변화를 보이지 않았으며, 허리둘레 및 엉덩이 둘레도 실험 전 후 거의 변화를 나타내지 않았으므로 상엽추출물의 섭취는 신체계측치에 영향을 미치지 않았다. 상엽군에서 수축기 혈압은 $127.1{\pm}18.9mmHg$에서 $128.7{\pm}21.0mmHg$로, 이완기 혈압은 $80.5{\pm}12.1mmHg$에서 $77.0{\pm}12.1mmHg$로 거의 변화를 나타내지 않음으로서 상엽추출물의 섭취는 당뇨병 환자의 혈압에 영향을 미치지 않았다. 상엽군에서 공복혈당은 $141.9{\pm}39.4mg/dL$에서 $135.8{\pm}41.4mg/dL$로, 당화혈색소는 $7.8{\pm}1.4%$에서 $7.0{\pm}0.6%$로 유의(p<0.05)하게 감소하였다. 그러나 위약군에서는 실험 전 후 공복혈당 및 당화혈색소에서 차이를 나타내지 않았다. 상엽추출물의 섭취가 12주간 이루어지면서 총콜레스테롤은 $188.4{\pm}21.9mg/dL$에서 $176.7{\pm}23.8mg/dL$로 감소하였고, LDL-콜레스테롤에서는 상엽군은 $116.9{\pm}29.3mg/dL$에서 $104.3{\pm}23.2mg/dL$로 유의 (p<0.05)하게 감소한 반면, 위 약군은 $121.3{\pm}24.3mg/dL$에서 $121.5{\pm}17.3mg/dL$로 변화가 없었다. 중성지 방은 상엽추출물의 섭취 후 $167.6{\pm}44.5mg/dL$에서 $123.2{\pm}29.3mg/dL$로 유의(p<0.01)하게 감소한데 반해 위 약군은 $152.0{\pm}55.9mg/dL$에서 $155.3{\pm}51.4mg/dL$로 오히려 약간의 증가를 보였다. 상엽섭취군의 공복혈당 및 당화혈색소 농도수준에 따라 그 변화를 살펴보면, 공복혈당 불량군은 실험 전 $188.2{\pm}45.2mg/dL$에서 상엽추출물 섭취 후 $161.3{\pm}25.3mg/dL$로 유의(p<0.05)하게 감소한 반면 공복혈당 양호군에서는 $119.3{\pm}22.4mg/dL$에서 $119.9{\pm}21.9mg/dL$로 변화를 보이지 않았다. 당화혈색소 불량군의 경우 실험 전 $8.7{\pm}0.7%$에서 실험 후 $7.8{\pm}0.8%$로 유의(p<0.05)하게 감소한 것에 반하여, 당화혈색소 양호군에서는 $6.7{\pm}1.2%$에서 $6.6{\pm}1.2%$로 변화가 없음을 확인할 수 있었다. 상엽추출물의 12주간 섭취 후 AST는 $24.8{\pm}3.5\;IU/L$에서 $31.8{\pm}8.7\;IU/L$로, ALT는 $26.4{\pm}4.6\;IU/L$에서 $32.8{\pm}7.8\;IU/L$로, $\gamma$-GTP는 $31.5{\pm}4.7mg/L$에서 $33.7{\pm}4.8mg/L$로 조금씩 증가하였으나 모두 정상범위의 수치였다.

Keywords

References

  1. Yoshikumi Y. 1996. Inhibition of intestinal $\alpha$-glycosidase activity and postpranidal hyperglycemia by moranoline and its N-alkyl derivaties. Agric Biol Chem 52: 121-126
  2. Yoo SK, Kim MJ, Kim JW, Rhee SJ. 2002. Effects of YK- 209 mulberry leaves on disaccharidase activities of small intestine and blood glucose-lowering in streptozotocin- induced diabetic rats. J Korean Soc Food Sci Nutr 31: 1071-1075 https://doi.org/10.3746/jkfn.2002.31.6.1071
  3. Asano N, Oseki K, Kizu H, Matsui K. 1994. Sugars with nitrogen in the ring isolated from the leaves of morus bombycis. Carbohydr Res 253: 235-245 https://doi.org/10.1016/0008-6215(94)80068-5
  4. Asano N, Oseki K, Tomioka E, Kizu H, Matsui K. 1994. N-containing sugars from morus alba and their glycosidase inhibitory activities. Carbohydr Res 259: 243-255 https://doi.org/10.1016/0008-6215(94)84060-1
  5. Enkhmoa B, Shiwaku K, Katsube T, Kitajima K, Anuurad E, Yamasaki M, Yamane Y. 2005. Mulberry (Morus alba L.) leaves and their major flavonol quercetin 3-(6-malonyl glucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. J Nutr 135: 729-734
  6. Onogi A, Osawa K, Yasuda H, Sakai A, Morita H, Tokawa H. 1993. Flavonol glycosides from the leaves of Morus alba. Shoyakugaku Zasshi 47: 423-425
  7. Kim SY, Lee WC, Kim HB, Kim SK. 1998. Antihyper-lipidemic effects of methanol extracts from mulberry leaves in cholesterol induced hyperlipidemia in rats. J Korean Soc Food Sci Nutr 27: 1217-1222
  8. Andallu B, Varadacharyulu NCH. 2003. Antioxidant role of mulberry leaves in streptozotocin-diabetic rats. Clin Chim Acta 338: 3-10 https://doi.org/10.1016/S0009-8981(03)00322-X
  9. Sung YA. 2000. The prevention of type II diabetes. J Kor Med Assoc 43: 1103-1109 https://doi.org/10.5124/jkma.2000.43.11.1103
  10. Lee KW, Shon BH, Kang SK, Park BK, Park DH, Min BS, Song HY. 1984. Epidemiologic study for diabetes in 1821 Koreans. Diabetes 8: 5-14
  11. Lubbos H, Miller JL, Rose LI. 1995. Oral hypoglycemic agents in type II diabetes mellitus. Am Fam Physician 52: 2075-2078
  12. Tattersall R. 1993. $\alpha$-Glucosidase inhibition as an adjunct to the treatment of type 1 diabetes. Diabet Med 10: 688- 693 https://doi.org/10.1111/j.1464-5491.1993.tb00149.x
  13. Campbell LK, White JR, Campbell RK. 1996. Acarbose: its role in the treatment of diabetes mellitus. Ann Pharmacother 30: 1255-1262 https://doi.org/10.1177/106002809603001110
  14. Nelson RW, Robertson J, Feldman EC, Briggs C. 2000. Effect of the alpha-glucosidase inhibitor acarbose on control of glycemia in dogs with naturally acquired diabetes mellitus. J Am Vet Med Assoc 216: 1265-1269 https://doi.org/10.2460/javma.2000.216.1265
  15. Hanefeld M. 1998. The role of acarbose in the treatment of non-insulin dependent diabetes mellitus. J Diabetes Com--plications 12: 228-237 https://doi.org/10.1016/S1056-8727(97)00123-2
  16. Kimura M, Chen FJ, Nakashima N, Kimura I, Asano N, Koya S. 1995. Antihyperglycemic effects of N-containing sugars derived from mulberry leaves in streptozotocin- induced diabetic mice. J Traditional Med 12: 214-219
  17. Chung SH, Kim MS, Choue RW. 1997. Effect of mori folium column fraction on intestinal $\alpha$-glycosidase activity in mice administered with a high carbohydrate-containing diet. J Yakhak Hoeji 41: 485-487
  18. Lee JS, Choi MH, Chung SH. 1995. Blood glucose-lowering effects of mori folium. J Yakhak Hoiji 39: 367-372
  19. Mo SM, Lee YS, Goo JO, Son SM. Seo JS, Youn EY, Lee SK, Kim WK. 2002. Diet therapy. 2nd ed. Kyomunsa, Seoul. p 327
  20. Korean Dietetic Association. 1999. Manual of medical nutrition therapy. 2nd ed. Korean Dietetic Association, Seoul. p 180
  21. Lim SJ, Kim SY, Lee JW. 1994. The effect of Korean wild vegetables on blood glucose levels and liver muscle metabolism of streptozotocin-induced diabetic rats. Kor J Nutr 28: 819-827
  22. Fuller JH, Stevens LK. 1991. Epidemiology of hypertension in diabetic patients and implications for treatment. Diabetes Care 14: 8-12 https://doi.org/10.2337/diacare.14.1.8
  23. Kennedy DL, Piper JM, Baum C. 1988. Trends in use of oral hypoglycemic agent during 1964-1986. Diabetes Care 11: 558-562 https://doi.org/10.2337/diacare.11.7.558
  24. Committee for establishment of hyperlipidemia therapy guide. 1996. Guideline for hyperlipidemia therapy. Seoul
  25. Dunn FL. 1990. Hyperlipidemia in diabetes mellitus. Diabetes Metab Rev 6: 47-61 https://doi.org/10.1002/dmr.5610060103
  26. Kikuchi T, Onuma T, Schimura M, Tsutsui M, Boku A, Matsui J, Takebe K. 1994. Different change in lipoprotein(a) levels from lipid levels of other lipoproteins with improved glycemic control in patients with NIDDM. Diabetes Care 17: 1059-1061 https://doi.org/10.2337/diacare.17.9.1059
  27. Kim YJ, Min HK, Choi YK, Lee TH, Hur GB, Shin SH. 1998. Diabetes. 2nd ed. Korea Medical Book Pub, Seoul. p 304-305
  28. Song MK, Hong SG, Hwang SJ, Park OJ, Park MH. 2003. Improve effects of saengshik on patient with fatty liver and hyperlipidemia in murine. Kor J Nutr 36: 834-840

Cited by

  1. Effects of mulberry leaf extract on blood glucose and serum lipid profiles in patients with type 2 diabetes mellitus: A systematic review vol.8, pp.5, 2016, https://doi.org/10.1016/j.eujim.2016.06.008
  2. Development of Mulberry-leaf Tea Containing γ-Aminobutyric Acid (GABA) by Anaerobic Treatments vol.47, pp.5, 2015, https://doi.org/10.9721/KJFST.2015.47.5.652
  3. Intercultural Usage of Mori Folium: Comparison Review from a Korean Medical Perspective vol.2015, 2015, https://doi.org/10.1155/2015/379268
  4. Mori Folium regulates DSS-induced ulcerative colitis in mice and cytokine production in mast cells vol.12, pp.2, 2012, https://doi.org/10.1007/s13596-012-0055-5
  5. Proteomic-Based Approach to the Proteins Involved in 1-Deoxynojirimycin Accumulation in Silkworm Bombyx mori (Lepidoptera: Bombycidae) vol.18, pp.2, 2018, https://doi.org/10.1093/jisesa/iey007
  6. 대사증후군 개선을 위한 뽕잎, 오디, 누에 분말의 혼합 비율 최적화 vol.18, pp.2, 2018, https://doi.org/10.15429/jkomor.2018.18.2.83