DOI QR코드

DOI QR Code

Study on the Degradation of Pigskin Collagen Using Irradiation Technique

방사선조사를 이용한 돈피 콜라겐의 저분자화 연구

  • Published : 2006.06.01

Abstract

This study was intended to observe possibility of which radiation technique can be used for oligopeptide production from pigskin collagen to reduce environmental pollution in processing and simplify the processing steps. Raw pigskin was ground using chopper, and then defatted in acetone cooled at $-20^{\circ}C$ freezer. Defatted dried pigskin was irradiated at 20, 40, 60, 100, 150, 200, 250, and 300 kGy using Co-60 gamma rays irradiator. With irradiation doses, the amount of soluble proteins increased, and the viscosity and turbidity of soluble proteins decreased, which could be clue of that irradiation degrade high molecular proteins directly. pH of soluble proteins from defatted pigskin increased in the sample above 150 kGy, and low molecular weight components (below 24 kDa) in SDS-PAGE increased. From gel permeation chromatography of the hydrolysates of pigskin irradiated at 300 kGy showed the major peak of 9,000, 8,200, 860, and 170 Da.

방사선조사를 이용하여 돈피유래 올리고펩타이드를 제조하고자 하였다. 생박돈피를 chopper를 이용하여 조분쇄한 후 $-20^{\circ}C$ 아세톤으로 탈지하였고, $\gamma$-ray irradiator를 이용하여 0, 20, 40, 50, 100, 150, 200, 250, 300 kGy의 총 흡수선량을 얻도록 탈지돈피에 방사선조사를 하였다. 탈지돈피의 pH는 150 kGy이상에서 소폭 증가하였고, SDS-PAGE에서 방사선조사선량이 증가할수록 분자량 24 kDa이하의 저분자 물질이 점차 증가하였고, 효소처리를 병행했을 때 $\alpha$- 및 $\beta$-나선구조의 100 kDa 및 200 kDa의 콜라겐 밴드가 소실되는 반면에 24 kDa의 밴드가 형성되고 있으며, 방사선 조사선량이 증가할수록 10% SDS-polyacrylamide gel 하단에 콜라겐 분해 물질로 예상되는 저분자 물질이 축적되는 현상을 보였다. 방사선조사선량에 따른 수용성 단백질의 용해도, 점도 및 탁도를 측정한 결과 방사선조사선량이 증가할수록 용해도가 증가하고 점도 및 탁도가 감소하는 현상을 보였고, 방사선을 조사한 돈피에 papain 1%를 첨가하여 수용성 단백질을 추출한 경우 비 효소처리구에 비하여 점도가 낮아지는 현상을 보여 돈피 단백질이 papain에 일정수준 가수분해되고 있음을 알 수 있었다. 300 kGy로 방사선을 조사한 돈피 가수분해물을 gel permeation chromatography한 결과 분자량 9,000, 2100, 860, 170 Da의 분획물을 확인하였다. 이상의 결과는 환경오염 문제를 최소화하고 제조공정을 단순화하여 경제성 있는 콜라겐 유래 기능성 올리고펩타이드를 제조함에 있어 방사선조사기술(RT: Radiation Technology)이 고분자물질의 저분자화에 직접 이용될 수 있는 기술로 실용화되어 환경오염을 최소화할 수 있는 대체기술로 가능할 것으로 생각된다.

Keywords

References

  1. Lee MH. 1988. Meat Science; Theory and Application. Sunjin Press, Seoul. p 242
  2. Piez KA. 1966. Collagen. In The Physiology and Biochemistry of Muscle as a Food. Eds EJ, Briskey RG, Cassens JC, eds. Madison Press, Wisconsin. Vol 1, p 315
  3. Togashi SI, Takahashi N, Iwama M, Watanabe S, Tamagawa K, Fukui T. 2002. Antioxidative collagen-derived peptides in human-placenta extract. Placenta 23: 497-502 https://doi.org/10.1053/plac.2002.0833
  4. Samonina G, Ashmarin I, Lyapina L. 2002. Glyproline peptide family: review on bioactivity and possible origins. Pathophysiol 8: 229-234 https://doi.org/10.1016/S0928-4680(02)00018-4
  5. Ashimarin IP, Karazeeva EP, Lyapina LA, Samonia GE. 1998a. The simplest proline-containing peptides PG, GP, PGP and GPGG: regulatory activity and possible sources of biosysthesis. Biochemistry (Moscow) 63: 119-124
  6. Lyapina LA, Pastorava VE, Samonia GE, Ashmarin IP. 2000. The effect of PGP peptide and PGP-rich substances on haemostatic parameters of rat blood. Fibrinolysis Blood Coagul 11: 1-6 https://doi.org/10.1097/00001721-200011010-00001
  7. Samonia GE, Kopylova GN, German SV, Umarova BA, Bakaeva ZV, Zeliaznik NJ, Zhuykova SE, Sergeev VI, Lukjanzeva GV, Smirnova EA, Lelekova TV. 2000b. Endogenous peptides and gastric mucosal homeostasis. In 'Pathophysiology of organs and system. Typical physiological processes (experimental and clinical aspects)'. Proceedings of II Russian Congress of Photophysiology (Moscow). p 133
  8. Gudasheva TA, Boyko SS, Akparov VKh, Ostrovskaya RU, Scoldinov SP, Rozantsev GG, Voronina TA, Zherdev VP, Seredenin SV. 1996. Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolyl in rat brain. FEBS Lett 391: 149-152 https://doi.org/10.1016/0014-5793(96)00722-3
  9. Olivia BW, Christine MB. 1996. Position of the American dietetic association. Food irradiation. The American Dietetic Association Info
  10. Wood RT, Pikaev AK. 1994. Applied radiation chemistry; Radiation processing. Wiley, New York. p 341
  11. Jamall IS, Finelii VN, Que Hee S. 1981. A single method to determine nanogram of levels of 4-hydroxyproline in biological tissue. Anal Biochem 112: 70-75 https://doi.org/10.1016/0003-2697(81)90261-X
  12. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  13. Yook HS, Kim MR, Kim JO, Lim SI, Byun MW. 1998. Effects of $gamma$-irradiation on meat protein. Korean J Food Sci Technol 30: 407-412
  14. Kume T. 1994. Immunochemical identification of irradiated chicken eggs. J Sci Food Agric 65: 1-4 https://doi.org/10.1002/jsfa.2740650102
  15. Matoba T, Yoshida H, Yonezawa D. 1982. Changes in casein and egg albumin due to reactions with oxidizing methyl linoleate in dehydrate systems. Agric Biol Chem 46: 979-986 https://doi.org/10.1271/bbb1961.46.979
  16. Choi WS, Ahn KJ, Lee DW, Byun MW, Park HJ. 2002. Preparation of chitosan oligomers by irradiation. Polymer Degradation and Stability 78: 533-538 https://doi.org/10.1016/S0141-3910(02)00226-4

Cited by

  1. Effect of Sub- and Super-critical Water Treatment on Physicochemical Properties of Porcine Skin vol.35, pp.1, 2015, https://doi.org/10.5851/kosfa.2015.35.1.35
  2. Quality Characteristics of Pork Skin Collagen with Enzyme Treatments vol.29, pp.5, 2016, https://doi.org/10.9799/ksfan.2016.29.5.760
  3. The Study of Development of permanent wave for Additives of Collagen vol.11, pp.9, 2010, https://doi.org/10.5762/KAIS.2010.11.9.3277
  4. Physico-Chemical Characteristics Evaluation of White Pork Rind and Black Pork Rind vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.544