DOI QR코드

DOI QR Code

부식에 의한 부착저항감소를 고려한 콘크리트 교량의 균열폭 예측

Crack Width Prediction in Concrete Bridges Considering Bond Resistances affected by Corrosion

  • Cho, Tae-Jun (Dept. of Civil Engineering, Cheongju University) ;
  • Cho, Hyo-Nam (Dept. of Civil Engineering, Hanyang University) ;
  • Park, Mi-Yun (Dept. of Civil Engineering, Hanyang University)
  • 발행 : 2006.08.31

초록

사용성 한계상태로서의 균열폭 예측에 관한 현재의 교량설계 시방기준은, 부식의 시작과 진행에 의한 균열폭을 고려할 때 이론적으로 불충분하다. 균열폭은 하중, 부착, 미끄러짐, 그리고 철근이나 긴장재의 부식에 영향을 받게 된다. 콘크리트 교량의 생애주기 동안의 시간 의존적 일반부식을 고려하여, 균열폭 예측식을 제안하였다. 개발된 부식모델과 균열예측식은 프리스트레스트 콘크리트교량과 일반콘크리트교량의 설계시 시간단계별로 물-시멘트 비, 피복두께, 단면형상의 변화에 따른 극한한계상태와 사용성한계상태의 평가에 사용될 수 있다. 또한 기존교량의 시간단계별 극한 한계상태 및 사용성한계 상태의 평가를 통해서 정량적인 유지관리 및 잔존수명예측에 기여할 것으로 기대한다.

The current design for crack width control in concrete bridges is incomplete in analytical models. As one of the important serviceability limit states, the crack width be considered with the quantitative prediction of the initiation and propagation of corrosion and corrosion-induced cracking. A serviceability limit state of cracking can be affected by the combined effects of bond, slip, cracking, and corrosion of the reinforcing elements. Considering life span of concrete bridges, an improved prediction of crack width affected by time-dependent general corrosion has been proposed for the crack control design. The developed corrosion models and crack width prediction equation can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also be used as the rational criteria for the maintenance of existing concrete bridges and the prediction of remaining life of concrete structures.

키워드

참고문헌

  1. Gergely, Peter and Lutz, L. A., Maximum Crack Width in Reirforced Concrete Flexural Members, Causes, Mechanism, and Control of Cracking in Concrete, Special Publication SP-20, American Concrete Institute, 1968, pp.87-117
  2. Hognestad, E., Design of Concrete for Service Life, Concrete International, June 1986, pp.63-67
  3. Gergely, Peter., Role of Cover and Bar Spacing in Reirforced Concrete, ACI Special Publication SP-72, pp.133-147
  4. Rice, P. F., 'Structural Design of Concrete Sanitary Structures', Concrete International, October 1984, pp.14-16
  5. CEB/FIP 90, Structural Concrete, Vol.2, 1990, 84pp
  6. Ting, S. C., 'The effects of corrosion on the reliability of concrete bridge girders', Doctoral Dissertation of-the University of Michigan, 1989, pp.56-67
  7. 김성욱, 김도겸, 이종석, '해안 콘크리트 구조물의 성능저하 평가에 관한 연구', 한국건석기술연구원, 2003. 12, 54pp
  8. Arya, C. and Newman, J. B., 'Assessment of Four Methods of Determining the Free Chloride Content of Concrete', Materials and Structures, Vol.23, 1990, pp.319-330 https://doi.org/10.1007/BF02472710
  9. Dhir, R. K., Jones, M. R., and Ahmed, H. E. H., 'Determination of Total and Soluble Chlorides in Concretes', Cement and Concrete Research, Vol. 20, 1990, pp.579-590
  10. Bentz, D. P., Garboczi, E. J., and Lagergren, E. S., 'MultiScale Microstructural Modeling of Concrete Diffusivity: Identification of Significant Variables', Cement, Concrete, and Aggregates, Vol.20, No.1, 1998, pp.129-139 https://doi.org/10.1520/CCA10446J
  11. Segerlind L. J., Applied Finite Element Analysis, Wiley Text Books; $2^{nd}$ edition, 1984, 185pp
  12. Kim Anh T. Vu. and Mark G Stewart, 'Structural reliability of concrete bridges including improved chloride-induced corrosion models', Structural Safety Vol.22, 2000, pp.313-333 https://doi.org/10.1016/S0167-4730(00)00018-7
  13. Cho, Taejun, Reliability Models for Corrosion of Concrete Bridges, Doctoral Dissertation of the University of Michigan., 2003, pp.1-310
  14. Cabrera, J. G., 'Deterioration of Concrete Due to Reinforcement Steel Corrosion', Cement & Concrete Composites Vol.18, 1998, pp.1010-1019
  15. Almusallam, A., AI-Gahtani, A. S., Aziz, A. R., Dakhil, F. H., and Rasheeduzzafar, 'Effect of reinforcement corrosion on bond strength', Construction and Building Materials Vol.10, No.2, 1996, pp.123-129 https://doi.org/10.1016/0950-0618(95)00077-1
  16. Nawy, E. G. and Potyondy, J. G., Moment rotation, cracking and deflection of spirally bound, pretensioned prestressed concrete beams, New Brunswick: Rutgers Univ., Vol.81, No.5, 1970, pp.104- 116
  17. Nawy, E. G. and Huang, P. T., 'Crack and Deflection Control of Pretensioned Prestressed Beams', PCl Journal, Vol. 22, No.3, May-June, 1977, pp.30-47 https://doi.org/10.15554/pcij.05011977.30.47
  18. Meier, S. W. and Gergely, P., 'Flexural Crack Width in Prestressed Concrete Beams', Journal of the Structural Division, ASCE, Vol.107, No.ST2, 1981, pp.429-433
  19. Naaman, A. E., Partially Prestressed Concrete: Review and Recommendations, PCI Code JR-319, 1985, 43pp
  20. Menegotto, M. and Pinto, P. E., 'Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Combined Normal Forces and Bending.' lABSE Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon. 1973, pp.15-22
  21. Sargin, M., Stress-Strain Relationship for Concrete and the Analysis of Structural Concrete Sections, Study No.4, Solid Mechanics Division, University of Watyerloo, 1971, 167pp
  22. Hognestad, E., 'Fundamental Concepts in Ultimate Load of Reinforced Concrete Members', J. ACl, 1952, pp.48-53