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ABSTRACT

Bilevel programming problem is a two—stage optimization problem where the constraint
region of the first level problem is implicitly determined by another optimization problem.
In this paper we consider the bilevel quadratic/linear fractional programming problem in
which the objective function of the first level is quasiconcave, the objective function of the
second level is linear fractional and the feasible region is a convex polyhedron. Consider—
ing the relationship between feasible solutions to the problem and bases of the coefficient
submatrix associated to variables of the second level, an enumerative algorithm is pro—
posed which finds a global optimum to the problem.

Keywords: Bilevel Programming, Non—convex Optimization, Quasiconcave Functions,
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1. INTRODUCTION

In this paper we consider the Bilevel Quadratic/Linear Fractional Programming

Problem (BQLFP) defined as

(BQLFP) : minf,(x) = Z(X)Z,(X) = (C"X + a)D'X + B,)

=(X;, + Xy + o) d X, +d. X5 + B)
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where X, solves

11 12
ag+c X +c X,
By + P X, + X,

min f,(X) =

subject to
X=(X,X,)eS,

where X, e R™ and X, e R™ are the variables controlled by the first level and

the second level decision maker resp.; cl,cz,dl,dz,cll,clz,cz1 and ¢%? are vectors

of conformal dimension; a;,a,,5 and S, are scalars and the common con-

straint region to both levels is a polyhedron i.e.
S={X;, X,): A'X; +A*X, =b, X, 20, X, >0}

where A' isan mxn, matrix A% isan mxn, matrix and b is an m-vector.

Based upon the fact that concave functions have an extreme point optimal so-
lution, a number of algorithms have been proposed to minimize concave functions.
The most notable among them are cutting plane method [1, 10, 16], branch and
bound methods [7, 13, 14] and by ranking extreme points [3, 12]. These algo-
rithms have been applied to a number of special problems, such as the optimiza-
tion of concave quadratic functions and bilinear programming problems. H.
Konno and 7. Kuno [9] have proposed an algorithm for solving a linear, multipli-
cative programming problem by the combination of the parametric simplex
method and the standard convex minimization problem. A bibiliography of refer-
ence on bilevel and multilevel programming, which is updated biannually, can be
found in [15]. Candler and Townsley [6] provided a setting of the bilevel problem
as a generalisation of standard mathematical programming problems. A bibliog-
raphy of references on bilevel and multilevel programming problems in both lin-
ear and non-linear cases can be found in [14]. A Quadratic Fractional Program-
ming Problem (QFP) has been studied by many authors in 1994. R. Gupta and
M.C. Puri [8] developed an algorithm for ranking the extreme points of QFP.
Mathur and Puri [11] in 1995 stated that the optimal solution of the bilevel linear
fractional programming problem might occur at a non-extreme point. But Calvete
and Gale [4] in 1998 proved that, under some assumptions, the optimal solution
of the bilevel programming problem , in which the objective functions are quasi-
concave and the constraint region common to both levels is a polyhedron, can be
found at an extreme point of the polyhedron. Later in 1999 [5], they proposed an
enumerative algorithm that finds a global optimal solution to the bilevel lin-
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ear/linear fractional programming problem. In this paper, considering the rela-
tionship between points of the inducible region and bases of the coefficient sub-
matrix associated to variables of the second level, an algorithm is proposed which
finds a global optimum solution to the BQLFP problem in a finite number of steps

2. THEORETICAL DEVELOPMENT

We assume that g, +c?'X; +¢®X, >0 V(X,,X,)eS is assumed to be non-
empty and compact. A® has full row-rank and m < n, . The projection of S on to

R™ is denoted by
S, ={X; eR" :(X,,X,) e S}

Let V; and V, be respectively the sets of indices of first level and second level

controlled variables.
For each X €S, the feasible region of the second level decision maker is

S(X))={X, eR"™ :A2X2 =b_AlX1,X2 >0} .

It is also a non-empty compact polyhedron. The inducible region or feasible region
of the first level decision maker is denoted by

IR = {(Xl,Xz) : X; 20 where X, minimizes

11 12
{;2 +021§1 +622§2 ; A'X, + A%X, =b, X, >0 over Xz}}
, +co X, +¢° X,

It is also assumed that for each value of X, € S, there will be a unique solution

to the followers’ problem.
The following lemma and theorem are stated and proved in [2].

Lemma 1: The inducible region of the quasiconcave bilevel programming problem
is piecewise linear.

Theorem 1: There is an extreme point of the feasible region S which is an opti-
mal solution to the quasiconcave bilevel programming problem.
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In the BQLFP defined above, f; and f, are quasiconcave (f : indefinite
quadratic, f,: linear fractional i.e. ratio of two affine functions). Hence in accor-

dance to the above lemma, the inducible region IR of BQLFP is comprised of the
union of connected faces of S and the optimal solution is at an extreme point of
the feasible region S. This suggests the use of extreme point search method to
develop an algorithm for solving the BQLFP problem.

3. ALGORITHMIC DEVELOPMENT

The optimal solution of BQLFP being the point of IR, the points of IR and their
corresponding basis are analyzed to get a better solution, if possible.
For each X, €S;, a point of IR is obtained by solving the linear fractional

programming problem.

12 —
FP(X1): min%—w_l
X, Xy + by

subject to
X, e S(X))

where @, =c''X| +ay, fy=cX, +5;.

Hence an extreme point X, of the polyhedron S(X;) can be found which solves
FP(X1) and the point (X;,X,), so obtained, belongs to the inducible region.

Since a basis B of A? is associated to X,, we can associate a basis B of A”

to each point of IR. Therefore we need only to consider these basis. To solve
FP(X:), we consider the parametric approach. In this case, it is known that an
optimal solution to the following linear parametric problem LP(Xi) is an optimal
solution to FP(Xy) verifying the condition that F(1)=0:

LP(Xy): FO) = minf(c"”X, + &) - U™ X, + By)}

subject to
X, e S(X))

Hence an extreme point X, of S(X;) can be found which solves FP(X1) and the

point so obtained (X,,X,)eIR . Since a basis B of A? is associated to X,, we
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can associate a basis of A% to each point of IR. Therefore only these basis need
to be considered.

Consider the basis B of AZ.

In order to obtain points of IR, there must exist X, € S; such that B is a feasi-

ble basis to LP(X1). Also, for some A, B should verify the optimality conditions
of problem LP(Xi) along with the condition that F(1) =0 for at least one of

these values of 1.

During the verification of optimality conditions, we will get a lower bound 4,
and an upper bound A4, for A.
Hence for at least one A, F(1)=0 implies

12 —
c“Xopta
bS5 2B—L <), o))
c“Xopth

where X,p stands for the value of X, associated with the basis B.
ie. X,z =B'(b-A'X)), X, 20, B*(b-A'X,)20

Since a basis B should verify the optimality conditions of problem LP(X,), it

suffices to show that the condition
(0C): (c;* = Ac?*)—(cp — AcE)BT'A? 2 0 VjeV,

where c}z and cjg2 are the jth components of vectors ¢'? and ¢®? respectively;

¢yt and c¥ are the m-row vectors of ¢'? and ¢?? associated to the basic vari-

ables of B and AJ2 is the jth column of A?.

While we check this condition, we obtain the interval [4,,4,] for the parameter
A.If 4 =-0 or A, =, theinterval [4,,4,] will be open in that extreme. If no
such A exists so that basis B verifies condition (1), then this base is of no in-
terest because it is impossible to obtain a point of the inducible region correspond-
ing to it.

Now, points of IR corresponding to the basis B 1is obtained by solving the quad-
ratic programming problem:
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(QPP(B)): n}(infl(X) = (X + e Xop + o)A X +dy Xop + )
subject to
A'X, +A%X,p = b
X;, Xo520

Note that while B is analyzed, variables of the second level not associated to B
are equal to zero.
Note that £, agrees with the objective functions of QPP(B) because while B is

being analyzed, the variables of the second level not associated to it are equal to
Zero.
Suppose QPP(B) is feasible and (1) is verified, then the optimal solution

X =(X,,X,) is the best point of IR. Then we search for a new basis which can
improve the value of £ obtained earlier.

Let T be the set of indices of variables associated to the basis B.

Lemma 2: Any basis from A% capable of providing a point of IR better than X
must include atleast one vector whose index belongs to the set

C={jeV,-T: L]->O}

where Lj=Z1(z£-dj)+Z2(z{ -cj)—B(z{ —cl)(zé —c¢;) 1s the jth reduced cost coeffi-

cient in the optimal solution of QPP(B).

Proof : Let fl()_( ) denote the value of the first level objective function at X . Ac-
cording to X the matrix [4;,A,] is decomposed into [B,N], where B is an

mxm basis matrix associated to basic variables of X . For each X € IR, we can

write
H(X) =Z(X)Z,(X)
= ("X +a))(DTX+B)
=(X; + 6, Xy, + g Wd X, +dy X, + )
Let X g be a b.f.s. obtained by phase I of the simplex method. If we enter a;

into the basis and depart &, let X’B be the new b.f.s. s.t.
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. . X
XB, =XBl_XB,~7 and XB, =T>0
rj r;

ie. XBL :XBL—QYU and XABY =60
Given Z, =CyXp+a and Z,= DXy + B, new value of objective function is
A = 2,(X)2,(X)
m C A m A A
= [Z ¢g Xp +a1] [Z dp Xp +ﬂlj
i=1

i=1

=Y cg(Xg —0Y,)+é50+a || dp(Xp ~6Y;) +dg 6+

i=1 i=1
LEr 1T
= B

(Note éB =Cj, dB, =d])

=[f cp Xp _6% cay;j+cje+a1][§: dp Xp -3 dB_YL.j+dj0+ﬂ1]
=1 =1 i=1 i=1

=(Z, - 0z} +¢;0)(Z, - 0z; +d;0)

=(Z, - 6(z} — c;)N(Z, - (2} —d;))

=(Z\Zy - OZ, (2} - d;) + Zy(2} —¢;) - 02} —¢; (25 - d;))

=27,7,- 0L,

<Z,Z, = f,(X) (because #>0 and L;>0)

So, in order to improve the first level, we must consider the variables with indices
j such that L, >0. If X solves problem QPP(B), then L;<0 VjeV, and
vjieT.

If C,=¢, f, cannot be improved and the current best point is optimum to

BQLFP. If we have previously built sets C},CZ,...,C;, the new basis should in-

clude at least one index from each sets Ci,CZ,...,C:.
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Let E = {c}}.

Let, if possible, QPP(B) be infeasible or QPP(B) be feasible, but its optimal solu-
tion does not verify (1). Since this basis cannot be optimal to the second level
problem, this basis is no longer we are interested in. If C, denotes the set of in-

dices associated to B, then the new basis should not include all vectors with indi-

cesin the set C,.
If we have previously built sets (Cl,Cz2 ,...,C;) the new basis should not include

all vectors with indices in each of these sets.

Let E2 = U {Cé} .

Remark 1: To select indices which form the new basis it is suggested to solve the
following system for w;:

1, ifjeC, C ek
®): Y0521, 5_:{ 5 G ek,

0 Otherwise
1, ifjeC,, CyeE,
5.<3 5, -1, 5 = :
; i ; ! ! {O Otherwise
Z G)J =m
J

w; {01}, jeV,

The required indices correspond to j where wj=1.

2. If the basis B so formed has rank K <m, then Bz[B,N] where Bis a
matrix of independent vectors of B and N is a matrix of (m—k) vectors of

A? , 1s a basis from A?.

3.1 Algorithm for Solving the Bilevel Programming Problem

Step 0: Solve the problem (QPP):
(QPP): rr;{mf1 =(X; + X, +a))(d X, +do X, + )

st. (X;,X,)eS
0.1 If it is not feasible, stop. BQLFP is not feasible.
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Step 1:

1.1

1.2

Step 2:

Step 3:

Step 4:
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If the optimal solution exists, let X = (X'l ,)_(2) be an optimal solution.
Put X, =X, solve. FP(X,) Let }22 be the optimal solution.

If X2 = )_(2, stop. ()_(1,)_(2) is the current best point of IR.

Set E,=¢, E,=¢.

Solve QPP(B)

If QPP(B) is not feasible or if optimal solution of QPP(B) does not verify
(1), then compute C,

Set E, = E, U{C,}. Go to step 3.

If QPP(B) is feasible and (1) is verified, then compare the current

best point of IR with this solution and update if necessary.
Compute C;.If C) =4¢, stop. The current best point of IR is the optimal

solution to (BQLFP).

Otherwise set E; = E; U{C;}.

Solve P, .If P, is not feasible, stop. The current best point of IR is op-
timal to (BQLFP).

Construct B and compute [4,,4,] by solving (1). If no such A exists
for (1), compute C,.Set E, = E, U{C,}and go to step 3.

Otherwise go to step 1.

4. ILLUSTRATIVE EXAMPLE

For illustration we consider the following example:

min f; =(-x; —3x9 — %3 — x4 —1)(; +2x5 +1).
X+,

where (x3,%,,%5,%;) solves

242 +2x5 — 223 — 24

5 =
LA A 1+3x; +x, +3x, +x
1 2 3 4

subject to

X, — Xy + X3 + X5 =4

X, Xy, X3, Xy, X5, Xg 20
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Solve the Leader’s problem (QPP) given by
(QPP): min f; = (-x; —3xy - x5 — x4 ~1)(%; + 2x5 +1)
x5+,

subject to
X —Xg + X3 + Xj =4
X +Xg+ 2%y +x5=6

Xy, Xo, X3, X4, X5, Xg 20

The initial basic feasible solution is as shown in Table 1.

Table 1.
d;> 1 0 2 0 0 0
cj— -1 -3 -1 -1 0
Dy Cy X, |Valuesof X, x X, %y x, X Xg
0 0 % 4 1 -1 1 0 1 0
%g 6 1 1 0 2 0 1
zZ=-1 Zi-cj> 1 3 1 1 0 0
Z,=1 2 ~d; > -1 0 -2 0 0 0
f=-1 Lj— 2+6 3 3+26 1 0 0

Ly =(3+20) is most positive. Note that

X
. 4B
f =min—
J i
Hence x; enters and x; leaves the basis. By continuing in the same manner we

obtain Table 2.

Table 2.

dj— 1 0o 2 0 0 0

= -1 -3 -1 -1 0 0

Dy Cy Xg |Valuesof X, X% X, % %, %5 Xg

-1 % 5 2 0 1 1

-3 % 1 1 0 0 1

Z == Zj-c; > -4 0 o -7 -1 -4

Z,=11 2 -d;—> 3 0o o 5 2 2
f=-99 Li— -71+#1260 0 0 -122+4350 -29+20 —62+80
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Since L, <0 V j, Table 2 is an optimal one. Therefore,

X =(X;,X,)

=(0,1,5,0,0,0,)

is the optimal solution to the Leader’s problem (QPP). Put x, =0, x,=1 and

solve the follower’s problem by the parametric approach i.e. solve

LP(X,): F(Q1) = ;njg fo = (-2-3)xy + (-1 - )x, +(4-22)
subject to

Xg,X4,%5,%g 2D

The optimal solution of FP(X;) is X, =(5, 2,0,0) with [A%,A%]= [-g,w} and

F()=0 for A=—1T,
39

As X2 * X'z, the current best point of IR is (0, 1, 5, 5/2, 0, 0) and f, =-116.5.
Set El =¢, EZ =¢

Basis B, given by vectors with indices 3 and 4 is that first base to analyze. Solve
QPP(B,) given by

QPP(B)) : min f; = (—x; —3x, — x5 —x, —1)(x; +2x5 +1)
subject to
X +Xg+2x,=4

Xp,%9,%3,%4 20

The optimal solution is X = (0, 6, 10, 0), £, =—609.

Since fZ(X') = —§67— € [—%,w], condition (1) is verified.
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Because fl(X') =-609 < -116.5, update the current best point of IR as (0, 6, 10, 0,
0, 0) for which £ =-609.

Note that variables of the second level not associated to B, and therefore not to
be considered when solving problem QPP(B,), are also included in order to con-
struct the corresponding set C;.

Because reduced cost L; for none of the j’s is positive, therefore, C; =¢.

Hence, the algorithm terminates here and the current best point of IR i.e. X= ©,

6, 10, 0, 0, 0) is the global optimum to QPP. Its objective function value is
fi =—609.

5. CONCLUSION

In this paper, the bilevel quadratic/linear fractional programming problem
(BQLFP) has been considered. This problem assumes that objective functions of
both levels are, respectively, quadratic and linear fractional and the feasible re-
gion is a convex polyhedron. The problem is solved by converting the quadratic
objective into a linear objective. Considering the relationship between feasible
solutions to the problem and bases of the coefficient submatrix associated to vari-
ables of the second level, an enumerative algorithm is proposed which finds a
global optimum to the problem and an illustration is demonstrated.
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