Antiplatelet Activity of [5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl]guanidine (KR-32570), a Novel Sodium/hydrogen Exchanger-1 and Its Mechanism of Action

  • Lee Kyung-Sup (College of Pharmacy, Chungbuk National University) ;
  • Park Jung-Woo (Department of Applied Biochemistry, Division of Life Science, College of Biomedical and Health Science, Konkuk University) ;
  • Jin Yong-Ri (College of Pharmacy, Chungbuk National University) ;
  • Jung In-Sang (Department of Applied Biochemistry, Division of Life Science, College of Biomedical and Health Science, Konkuk University) ;
  • Cho Mi-Ra (College of Pharmacy, Chungbuk National University) ;
  • Yi Kyu-Yang (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Yoo Sung-Eun (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Chung Hun-Jong (Pediatric Department, Chungju Hospital, Konkuk Medical School, Konkuk University) ;
  • Yun Yeo-Pyo (College of Pharmacy, Chungbuk National University) ;
  • Park Tae-Kyu (Department of Biotechnology, Division of Life Science, College of Biomedical and Health Science, Konkuk University) ;
  • Shin Hwa-Sup (Department of Applied Biochemistry, Division of Life Science, College of Biomedical and Health Science, Konkuk University)
  • Published : 2006.05.01

Abstract

The anti platelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen $(10{\mu}g/mL)$, thrombin (0.05 U/mL), arachidonic acid $(100{\mu}M)$, a thromboxane (TX) $A_2$ mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin $F_2,\;1{\mu}M$) and a $Ca^{2+}$ ATPase inhibitor thapsigargin $(0.5{\mu}M)$ ($IC_{50}$ values: $13.8{\pm}1.8,\;26.3{\pm}1.2,\;8.5{\pm}0.9,\;4.3{\pm}1.7\;and\;49.8{\pm}1.4{\mu}M$, respectively). KR-32570 inhibited the collagen-induced liberation of $[^3H]$arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at $50{\mu}M$. The $TXA_2$ synthase assay showed that KR-32570 also inhibited the conversion of the substrate $PGH_2$ to $TXB_2$ at all concentrations. Furthermore, KR-32570 significantly inhibited the $[Ca^{2+}]_i$ mobilization induced by collagen at $50{\mu}M$, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen $(10{\mu}g/mL)$induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, $TXA_2$ synthase, the mobilization of cytosolic $Ca^{2+}$ and NHE-1.

Keywords

References

  1. Balsinde, J., Winstead, M. V., and Dennis, E. A., Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett., 531, 2-6 (2002) https://doi.org/10.1016/S0014-5793(02)03413-0
  2. Born, G. V. and Cross, M. J., The aggregation of blood platelets. J. Physiol., 168, 178-195 (1963) https://doi.org/10.1113/jphysiol.1963.sp007185
  3. Corti, R., Farkouh, M. E., and Badimon, J. J., The vulnerable plaque, acute coronary syndromes. Am. J. Med., 113, 668- 680 (2002) https://doi.org/10.1016/S0002-9343(02)01344-X
  4. Corti, R., Fuster, V., and Badimon, J. J., Pathogenetic concepts of acute coronary syndromes. J. Am. Coll. Cardiol., 41, 7S- 14S (2003) https://doi.org/10.1016/S0735-1097(02)02833-4
  5. Drayer, A. L., Meima, M. E., Derks, M. W., Tuik, R., and van Haastert, P. J., Mutation of an EF-hand Ca(2+)-binding motif in phospholipase C of Dictyostelium discoideum: inhibition of activity but no effect on $Ca^{2+}$-dependence. Biochem. J., 311, 505-510 (1995) https://doi.org/10.1042/bj3110505
  6. Holmsen, H. and Dangelmarier, C. A., Measurement of secretion of serotonin. Methods Enzymol., 169, 205-210 (1989) https://doi.org/10.1016/0076-6879(89)69061-1
  7. Jackson, S. P., Nesbitt, W. S., and Kulkarni, S., Signaling events underlying thrombus formation. J. Thromb. Haemost., 1, 1602-1612 (2003) https://doi.org/10.1046/j.1538-7836.2003.00267.x
  8. Jin, Y. R., Cho, M. R., Ryu, C. K., Chung, J. H., Yuk, D. Y., Hong, J. T., and et al., Antiplatelet activity of J78, an antithrombotic agent, is mediated by $TXA_2$ receptor blockade with $TXA_2$ synthase inhibition, suppression of cytosolic $Ca^{2+}$ mobilization. J. Pharmacol. Exp. Ther., 312, 214-219 (2005) https://doi.org/10.1124/jpet.104.073718
  9. Jneid, H., Bhatt, D. L., Corti, R., Badimon, J. J., Fuster, V., and Francis, G. S., Aspirin, clopidogrel in acute coronary syndromes: therapeutic insights from the CURE study. Arch. Intern. Med., 163, 1145-1153 (2003) https://doi.org/10.1001/archinte.163.10.1145
  10. Karmazyn, M., Gan, X. T., Humphreys, R. A., Yoshida, H., and Kusumoto, K., The myocardial $Na^+-H^+$ exchange: structure, regulation, its role in heart disease. Circ. Res., 85, 777-786 (1999) https://doi.org/10.1161/01.RES.85.9.777
  11. Karmazyn, M., Role of sodium-hydrogen exchange in cardiac hypertrophy, heart failure: a novel, promising therapeutic target. Basic. Res. Cardiol., 96, 325-328 (2001) https://doi.org/10.1007/s003950170040
  12. Klages, B., Brandt, U., Simon, M. I., Schultz, G., and Offermanns, S., Activation of G12/G13 results in shape change, Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J. Cell. Biol., 144, 745- 754 (1999) https://doi.org/10.1083/jcb.144.4.745
  13. Knight, D. R., Smith, A. H., Flynn, D. M., MacAndrew, J. T., Ellery, S. S., Kong, J. X., Marala, R. B., Wester, R. T., Guzman-Perez, A., Hill, R. J., Magee, W. P., and Tracey, W. R., A novel sodium-hydrogen exchanger isoform-1 inhibitor, zoniporide, reduces ischemic myocardial injury in vitro and in vivo. J. Pharmacol. Exp. Ther., 297(1), 254-259 (2001)
  14. Kusumoto, K., Igata, H., Abe, A., Ikeda, S., Tsuboi, A., Imamiya, E., Fukumoto, S., Shiraishi, M., and Watanabe, T., In vitro and in vivo pharmacology of a structurally novel $Na^+-H^+$ exchange inhibitor, T-162559. Br. J. Pharmacol., 135(8), 1995-2003 (2002) https://doi.org/10.1038/sj.bjp.0704647
  15. Lapetina, E. G., The signal transduction induced by thrombin in human platelets. FEBS Lett., 268, 400-404 (1990) https://doi.org/10.1016/0014-5793(90)81293-W
  16. Marala, R. B., Brown, J. A., Kong, J. X., Tracey, W. R., Knight, D. R., Wester, R. T., Sun, D., Kennedy, S. P., Hamanaka, E. S., Ruggeri, R. B., and Hill, R. J., Zoniporide: a potent and highly selective inhibitor of human $Na^+/H^+$ exchanger-1. Eur. J. Pharmacol., 451(1), 37-41 (2002) https://doi.org/10.1016/S0014-2999(02)02193-3
  17. Mentzer, R. M. Jr, Lasley, R. D., Jessel, A., and Karmazyn, M., Intracellular sodium hydrogen exchange inhibition, clinical myocardial protection. Ann. Thorac. Surg., 75, S700-S708 (2003) https://doi.org/10.1016/S0003-4975(02)04700-8
  18. Offermanns, S., Laugwitz, K. L., Spicher, K., and Schultz, G., G proteins of the G12 family are activated via thromboxane A2, thrombin receptors in human platelets. Proc. Natl. Acad. Sci., 91, 504-508 (1994)
  19. Raychowdhury, M. K., Yukawa, M., Collins, L. J., McGrail, S. H., Kent, K. C., and Ware, J. A., Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J. Biol. Chem., 269, 19256-19261 (1994)
  20. Roberts, D. E., McNicol, A., and Bose, R., Mechanism of collagen activation in human platelets. J. Biol. Chem., 279, 19421-19430 (2004) https://doi.org/10.1074/jbc.M308864200
  21. Rosskopf, D., Sodium-hydrogen exchange, platelet function. J. Thromb. Thrombolysis., 8, 15-24 (1999) https://doi.org/10.1023/A:1008986329267
  22. Rosskopf, D., Morgenstern, E., Scholz, W., Osswald, U., and Siffert, W., Rapid determination of the elevated $Na^+-H^+$ exchange in platelets of patients with essential hypertension using an optical swelling assay. J. Hypertens., 9(3), 231-238 (1991)
  23. Ruiz-Meana, M., Garcia-Dorado, D., Pina, P., Inserte, J., Agullo, L., and Soler-Soler, J., Cariporide preserves mitochondrial proton gradient, delays ATP depletion in cardiomyocytes during ischemic conditions. Am. J. Physiol. Heart. Circ. Physiol., 285, H999-1006 (2003) https://doi.org/10.1152/ajpheart.00035.2003
  24. Schlienger, R. G. and Meier, C. R., Effect of selective serotonin reuptake inhibitors on platelet activation: can they prevent acute myocardial infarction? Am. J. Cardiovasc. Drugs., 3, 149-162 (2003) https://doi.org/10.2165/00129784-200303030-00001
  25. Siffert, W., Regulation of platelet function by sodium-hydrogen exchange. Cardiovasc. Res., 29, 160-166 (1995) https://doi.org/10.1016/S0008-6363(96)88564-6
  26. Stelmach, H., Rusak, T., and Tomasiak, M., The involvement of the $Na^+/H^+$ exchanger in the formation of microvesicles by porcine platelets. Haematologia (Budap), 32, 239-252 (2002) https://doi.org/10.1163/15685590260461057
  27. The RAPT Investigators, Randomized trial of ridogrel, a combined thromboxane $A_2$ synthase inhibitor, thromboxane $A_2$/prostaglandin endoperoxide receptor antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction. The Ridogrel Versus Aspirin Patency Trial (RAPT). Circulation, 89, 588-595 (1994) https://doi.org/10.1161/01.CIR.89.2.588
  28. Touret, N., Tanneur, V., Godart, H., Seidler, R., Taki, N., and Burger, E., et al. Characterization of sabiporide, a new specific NHE-1 inhibitor exhibiting slow dissociation kinetics, cardioprotective effects. Eur. J. Pharmacol., 459, 151-158 (2003) https://doi.org/10.1016/S0014-2999(02)02824-8