Anodic Oxidation Lithography via Atomic Force Microscope on Organic Resist Layers

유기 저항막을 이용한 원자힘 현미경 양극산화 패터닝 기술

  • Published : 2006.05.01

Abstract

Atomic force microscope (AFM)-based anodic oxidation lithography has gained great in forests in fabricating nanometer scale features on semiconductor or metal substrates beyond the limitation of optical lithography. In this article AFM anodic oxidation lithography and its organic resist layers are introduced based on our previous works. Organic resist layers of self-assembled monolayers, Langmuir-Blodgett films and polymer films aye suggested to play a key role in enhancing the aspect ratio of producing features, the lithographic speed, and spatial precision in AFM anodic oxidation lithography.

원자힘 현미경 양극산화 패터닝 기술에 관한 연구를 유기 저항막의 종류 및 그들의 특성을 토대로 다루었다. 본 연구실에서 수행한 자기조립막, 랑뮈어-블라짓막, 고분자막 위에서의 원자힘 현미경 양극산화 패터닝에 대한 연구결과를 중심으로, 유기 저항막 위에서의 원자힘 현미경 양극산화 패터닝 기술에 대한 이해를 돕고자 하였다. 현실적인 공정 속도에서 높은 종횡비의 패턴을 형성하기 위해 원자힘 현미경 양극산화 패터닝에 유기 저항막의 전기-기계적 특성, 젖음 특성, 에칭 저항 특성 등이 중요한 인자들임을 제안하였다.

Keywords

References

  1. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1982) https://doi.org/10.1103/PhysRevLett.49.982
  2. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986)
  3. G. Marsh, Materialstoday, 6, 28 (2003)
  4. P. Gould, Materialstoday, 6, 34 (2003)
  5. D. Wouters and U. S. Schubert, Angew. Chem. Int. Ed., 43, 2480 (2004) https://doi.org/10.1002/anie.200300609
  6. G. Y. Liu, S. Xu, and Y. Qian, Acc. Chem. Res., 33, 457 (2000) https://doi.org/10.1021/ar980081s
  7. R. M. Nyffenegger and R. M. Penner, Chem. Rev., 97, 1195 (1997) https://doi.org/10.1021/cr960069i
  8. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, Chem. Rev., 105, 1171 (2005) https://doi.org/10.1021/cr030076o
  9. S. H. Lee and H. Lee, Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., New York, p109 (2004)
  10. D. M. Eigler and D. K. Schweizer, Nature, 344, 524 (1990) https://doi.org/10.1038/344524a0
  11. I-W. Lyo and Ph. Avouris, Science, 253, 173 (1991) https://doi.org/10.1126/science.253.5016.173
  12. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, Science, 283, 661 (1999) https://doi.org/10.1126/science.283.5402.661
  13. S. L. Brandow, W. J. Dressick, C. S. Dulcey, T. S. Koloski, L. M. Shirey, J. Schmidt, and J. M. Calvert, J. Vac. Sci. Technol. B, 15, 1818 (1997) https://doi.org/10.1116/1.589531
  14. M. Versen, B. Klehn, U. Kunze, D. Reuter, and A. D. Wieck, Ultramicroscopy, 82, 159 (2000) https://doi.org/10.1016/S0304-3991(99)00127-8
  15. E. Garfunkel, G. Rudd, D. Novak, S. Wang, G. Ebert, M. Greenblatt, T. Gustafsson, and S. H. Garofalini, Science, 246, 99 (1989) https://doi.org/10.1126/science.246.4926.99
  16. P. Radojkovic, M. Schwartzkopff, T. Gabriel, and E. Hartmann, Appl. Phys. A, 66, S701 (1998) https://doi.org/10.1007/s003390051225
  17. P. E. Sheehan, L. J. Whitman, P. K. William, and A. N. Brent, Appl. Phys, Lett., 85, 1589 (2004) https://doi.org/10.1063/1.1785860
  18. S. W. Lee, B. J. Park, G. Y. Yeom, and H. Lee, Nanotechnology, 16, 3137 (2005) https://doi.org/10.1088/0957-4484/16/12/068
  19. J. A. Dagata, J. Schneir, H. H. Haray, C. J. Evans, M. T. Postek, and J. Bennet, Appl. Phys. Lett., 58, 2001 (1990)
  20. R. M. Silver, E. E. Ehrichs, and A. L. de Lozanne, Appl. Phys. Lett., 51, 247 (1987) https://doi.org/10.1063/1.98462
  21. M. Baba and S. Matsui, Jpn. J. Appl. Phys., 29, 2854 (1990) https://doi.org/10.1143/JJAP.29.2854
  22. S. L. Konsek, R. J. N. Coope, T. P. Pearsall, and T. Tiedje, Appl. Phys. Lett., 70, 1846 (1997) https://doi.org/10.1063/1.118709
  23. S. Xu and G. Y. Liu, Langmuir, 13, 127 (1997) https://doi.org/10.1021/la962029f
  24. J. F. Liu, S. Cruchon-Dupeyrat, J. C. Garmo, J. Frommer, and G. Y. Liu, Nano Lett., 2, 937 (2002) https://doi.org/10.1021/nl025670c
  25. J. Zhao and K. Uosaki, Nano Lett., 2, 137 (2002) https://doi.org/10.1021/nl0100769
  26. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, J. Vac. Sci. Technol. B, 13, 2805 (1995) https://doi.org/10.1116/1.588270
  27. H. Sugimura and N. Nakagiri, J. Vac. Sci Technol. A, 14, 1223 (1996) https://doi.org/10.1116/1.580271
  28. D. Stievenard, P. A. Fontaine, and E. Dubois, Appl. Phys. Lett., 70, 3272 (1997) https://doi.org/10.1063/1.118425
  29. P. Avouris, T. Hertel, and R. Martel, Appl. Phys. Lett., 71, 285 (1997) https://doi.org/10.1063/1.119521
  30. J. Kim, Y. Oh, H. Lee, Y. Shin, and S. Park, Jpn. J. Appl. Phys., 37, 324 (1998)
  31. B. Legrand and D. Stievenard, Appl. Phys. Lett., 74, 4049 (1999) https://doi.org/10.1063/1.123257
  32. E. S. Snow, P. M. Campbell, and F. K. Perkins, Appl. Phys. Lett., 75, 1476 (1999) https://doi.org/10.1063/1.124730
  33. W. Lee, Y. Oh, E. R. Kim, and H. Lee, Synthetic Metals, 117, 305 (2001) https://doi.org/10.1016/S0379-6779(00)00392-1
  34. S. J. Ahn, Y. K. Jang, and H. Lee, Appl. Phys. Lett., 80, 2592 (2002) https://doi.org/10.1063/1.1467984
  35. H. Lee, S. A. Kim, S. J. Ahn, and H. Lee, Appl. Phys. Lett., 81, 138 (2002) https://doi.org/10.1063/1.1491011
  36. W. Lee, E. R. Kim, and H. Lee, Langmuir, 18, 8375 (2002) https://doi.org/10.1021/la0115076
  37. M. S. Son, E. R. Kim, and H. Lee, J. Korean Phys. Soc., 41, 949 (2002)
  38. S. M. Kim and H. Lee, J. Vac. Sci Technol. 13, 21, 2398 (2003)
  39. S. J. Bae, C. Han, M, S, Kim, C. C. Chung, and H. Lee, Nanotechnology, 16, 2082 (2005) https://doi.org/10.1088/0957-4484/16/10/017
  40. W. Lee, H. Lee, and M. S. Chun, Langmuir, 21, 8839 (2005) https://doi.org/10.1021/la0508083
  41. M. Tello and R. Garcia, Appl. Phys. Lett., 79, 424 (2001) https://doi.org/10.1063/1.1385582
  42. A. Ulman, An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly, Academic Press, San Diego, 1991
  43. H. J. Lee, H. Y. Park, S. Y. Koo, and H. Lee, Mat. Res. Soc. Proc., 739, 199 (2003)
  44. Q. Li, J. Zheng, and Z. Liu, Langmuir, 19, 166 (2003) https://doi.org/10.1021/la0259149
  45. J. N. Israelachvili, Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems, 2nd ed., Academic Press, New York, 1992
  46. H. Kolbe, Ann., 69, 257 (1849)
  47. K. Wilder, B. Singh, D. F. Kyser, and C. F. Quate, J. Vac. Sci. Technol. B, 16, 6 (1998) https://doi.org/10.1116/1.581013