Classification Techniques for XML Document Using Text Mining

텍스트 마이닝을 이용한 XML 문서 분류 기술

  • 김천식 (안양대학교 디지털미디어공학) ;
  • 홍유식 (상지대학교 컴퓨터정보공학부)
  • Published : 2006.05.01

Abstract

Millions of documents are already on the Internet, and new documents are being formed all the time. This poses a very important problem in the management and querying of documents to classify them on the Internet by the most suitable means. However, most users have been using the document classification method based on a keyword. This method does not classify documents efficiently, and there is a weakness in the category of document that includes meaning. Document classification by a person can be very correct sometimes and often times is required. Therefore, in this paper, We wish to classify documents by using a neural network algorithm and C4.5 algorithms. We used resume data forming by XML for a document classification experiment. The result showed excellent possibilities in the document category. Therefore, We expect an applicable solution for various document classification problems.

인터넷에는 많은 문서가 있고 지금도 새로운 문서가 만들어지고 있다. 따라서 인터넷에 존재하는 문서를 의미 있게 분류하는 것은 향후 문서의 관리 및 질의처리에서 중요한 문제이다. 하지만 지금까지 대부분은 키워드에 기초한 문서 분류방법을 사용하고 있다. 이 방법은 문서를 효율적으로 분류하지 못했다. 또한 의미를 포함한 문서의 분류를 하지 못한다. 사람이 문서를 꼼꼼하게 읽어서 문서를 분류하는 방법이 최선이지만, 시간적인 면이나 효율성에 문제가 있다. 따라서 본 논문에서는 신경망 알고리즘과 C4.5 알고리즘을 이용하여 문서를 분류하고자 한다. 실험 데이터로 XML로 만들어진 이력서 데이터를 사용하여 실험하였다. 실험결과 문서 분류에 가능성을 보였다. 또한, 다양한 문서 분류 응용에 적용하여 좋은 결과를 얻을 것으로 기대한다.

Keywords