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THE MEASURE-VALUED DYSON SERIES
AND ITS STABILITY THEOREM

KuN Sik Ryu AND MAN Kyu IMm

ABSTRACT. In this article, we establish the existence theorem for
measure-valued Dyson series and show that it satisfies the Volterra-
type integral equation. Furthermore, we prove the stability theo-
rems for measure-valued Dyson series.

1. Introduction

The Feynman-Kac formula plays the key role in the evolution of the
theories of quantum mechanics and from the stability theorems for it,
we can obtain the valuable information on the behavior of solution near
given point.

For a sake of study for the Feynman-Kac formula, Cameron and
Storvick introduced some definitions and some theories, related to the
operator-valued Feynman integral on the Wiener space in [4]. Since
then, the theory of this integral was investigated deeply by many math-
ematicians. In particular, Johnson and Lapidus proved the existence
theorem for the generalized Dyson series and its stability theorems in
(10, 11, 14, 15, 16].

Recently, the authors presented the definition of a complex-valued
analogue of Wiener measure w, on C[0,¢], the space of all continuous
functions on a closed interval [0,¢], associated with a complex-valued
measure ¢ on R in [22]. Indeed, if ¢ is the Dirac measure dy at the
origin in R then w,, is the concrete Wiener measure. In that paper, the
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authors derived the measure-valued measure V,, on C[0,t] and estab-
lish the measure-valued Feynman-Kac formula, which satisfies a kind of
Volterra integral equation.

This article consists of five sections. In section 2, we introduce some
notations, some definitions and some basic facts which are needed to
understand the contents of the subsequent sections. In section 3, we es-
tablish the existence theorem of the generalized Dyson series associated
with a measure-valued measure V,, and show that it satisfies an integral
equation under the some conditions for given potential functions. In
section 4, we find the relation between the Bartle integral with respect
to V,, and the conditional w,-integral. In the last section, we prove the
stability theorems for the generalized Dyson series, treated in section 3.

2. Preliminaries

In this section, we introduce some notations, definitions and facts
which are needed to understand the subsequent sections. Insofar as
possible, we adopt the definitions and notation of [21].

Let N be the natural number system and let R be the real number
system. For a natural number n, let R" be the n-times product space
of R. Let B(R) be the set of all Borel measurable subsets of R and let
my, be the Lebesgue measure on the measurable space (R, B(R)). Let
a1 =1, ay=-1, a3 =1 and ayg = —i.

For a positive real number ¢, let C[0, {] be the space of all real-valued
continuous functions on a closed bounded interval [0,¢] with the supre-
mum norm || - ||eo-

Let M(R) be the space of all finite complex-valued countably addi-
tive measures on (R,B(R)). For p in R, let §, be the Dirac measure
concentrated at p with total mass one. For p in M(R) and for E in
B(R), the total variation |u|(E) on E is defined by

n
(2.1) |ul(E) = sup > _ |u(Es),
i=1
where the supremum is taken over all finite sequences (E;) of disjoint sets
in B(R). Then |g| is in M(R) and, by the Jordan decomposition theorem

[9, (19.13) Theorem, p.307], there are unique nonnegative measures fi;
(.7 = 1, 27 374) in M(]R) such that

4
(2.2) p= ) aju.
=1
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By [5, Theorem 4.1.7, p.128] (M(R), |-|(R)) is a complex Banach space.
Let RM(R) be the space of all finite complex-valued measures u on
(R, B(R)) that are absolutely continuous with respect to my,.

Let B be a complex Banach space and let B* be the dual space of B.
For a B-valued countably additive measure v on (X, B) and for F in B,
the semivariation || v || (E) of v on E is given by

23)  |lv | (E) =sup{|z*v|(E) | z* is in B* and || z* ||g-< 1},

where |z*v|(E) is the total variation on FE of the complex-valued measure
x*v.

Let B be a complex Banach space and let (X,B,u) be a complex
measure space. A function f : X — B is called y-measurable if there
exists a sequence (f,) of B-valued simple functions with

(2.4) lim || fn—f =0 |p]-ae.
T—00

A function f is called p-weakly measurable if z* f is y-measurable for
each z* in B*, the dual space of B. We say that f is u-Bochner integrable
if there exists a sequence (f,) of B-valued simple functions such that
(fn) converges to f in the norm sense in B for |u|-a.e. and nlgréo Ix

I f(#) = fn(®) 1B dlul(®) =

From [21], we have the following theorem.

THEOREM 2.1. Let (X,B,p) be a complex measure space and let
f:+ X — M(R) be a u-Bochner integrable function. Then for E in
B(R), [f(t)](F) is a complex-valued p-integrable function of t and

@3 |- [ 50 du(t)] (8) = [ 1FO)(E) duto)

Let B be a complex Banach space and let (Y,C,v) be a B-valued
measure space. Let g be a complex-valued || v ||-measurable function
on Y, that is, there exists a sequence (g,) of complex-valued simple
functions with nli_)rglo lgn — gl =0 || v |-a.e. We say that g is v-Bartle

integrable if there exists a sequence (g,) of simple functions such that
(gn) converges to g | v |-a.e. and the sequence ([, gn(s)dv(s)) is
Cauchy in the norm sense. In this case, (Ba) — [y g(s)dv(s) is defined
by

(2.6) (Ba) — /Y o) dv(s) = lim [ ga(s) (o),

n—00

where the limit means the limit in the norm sense.



464 Kun Sik Ryu and Man Kyu Im

Let ¢ be in M(R) and 7 be a complex-valued Borel measure on [0, ¢].
A complex-valued Borel measurable function 6 on [0,¢] x R is said to

belong t0 Ly;o0,15 (0F Ll 00 1) if

(@27) 16 oot = /{0 11006, lsoo dir(s)

is finite, where || 8(0, ) ||p;00 18 Inf{A > 0 | |p|({{ In R | |6(0,&)] > A\}) =
0} and || 6(s,") ||p;00 is Inf{A > 0 | mr({{ in R | |6(s,&)| > A}) = 0} for
0 < s < t. If 6 is bounded Borel measurable, then § is in Ly.o0,1;5-

For § in L*°(R, my,), we consider an operator My from RM(R) into
itself such that

(2.8) Mo)(B) = | 2L (e)6(¢) dmu(e)

e dmy,

for £ in B(R) and for y in RM(R). Then

dM, d
(2.9) o e) = En/:—(f)ﬂ(i);
so My is well-defined. Since |My(u)|(R) < fR g (8] 16(6)] dmr(§) <

Il 6 ||oo |1t|(R), Mp is a bounded hnear operator
For s > 0, we let

(2.10) P,(E) = /E —l—exp{—g;} dm ()

for E in B(R).
For s > 0, we consider an operator S; from RM(R) into itself such
that

[Ss(1)I(E) =(p  P5)(E)

(2.11) . 1 (u— '1))2
= % ) [/ exp{— 5 } dmL(u)] du(v).
Then dss(”) &) = \/? Jrexp{— } dp(v). It is not hard to show

that S, is a bounded linear operator and the operator norm || Ss || of S,
is less than or equal to one.

Let s; and s2 be two positive real numbers. Then by the Chapman-
Kolmogorov equation in [10, Proposition 3.2.3, p.37] and the classical
Fubini theorem, we have

(2.12) Ss; 085, = Ss1tsy -
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For s > 0, for ¢ in M(R), for a Borel measurable |p|-essentially bounded
function 6 on (R, B(R)) and for E in B(R), we let
(2.13)

reeoE) == [ | [ e(v>exp{—<“;8”)2} muu)] dp)

Then T'(s, ¢, 0) is in RM(R) and

S u—v 2
(2.14) W(u)z %/Rﬁ(v)exp{—( - ) } do(v) .

Here we will introduce a complex-valued analogue of the Wiener mea-
sure w, on C0,t].

Let t be a positive real number and n a nonnegative integer. For
t= (tost1,. . ytn) with0O =ty < t; < -+ <ty <t,let Jp: clo,t] — R+
be a function with

(2.15) J2(x) = (z(to), 2(t1), - .., 2(tn)) -

For B; (j =0,1,2,...,n) in B(R), the subset J=([Ij_ B;) of C[0,1] is
called an interval. Let Z be the set of all intervals. For a nonnegative
finite Borel measure ¢ on (R, B(R)), we let

m<p(J,y_1(H B;))
=0

(216) - / [/ W(n+1;{;u0;ula"'7un)
Bo H;»L=1 B;
a[]me(ur, ... un)] deluo),
j=1

where

W(n_*_l;ﬁu())ul,"'aun)

n n 2
1 1 P — U
— H exp __Z (uj — uj-1)
j=1 2m(t; —tj-1) 2 j j

By [19, Theorem 5.1, p.144] and [19, Theorem 2.1, p.212], B(C[0,t]),
the set of all Borel subsets in C]0,t], coincides with the smallest o-

algebra generated by Z and there exists a unique positive measure wy,
on (C[0,t], B(C|0,t])) such that w,(I) = my(I) for all I in 7.
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For ¢ in M(R) with the Jordan decomposition ¢ = Z?:l a;jpj, let
Wy = E?Zl ajw,;. We say that w, is the complex-valued analogue of
the Wiener measure on (C|0, t], B(C|0, t])), associated with ¢.

By the change of variables formula, we can easily prove the following
theorem.

THEOREM 2.2. (The Wiener integration formula) If f : R®*! — C is
a Borel measurable function, then the following equality holds:

/ F(a(to), z(ta), .. ., 2(t)) dwy(z)
clo,4)

(2.17) = flug,ug, ..., un)W(n+ L5 ug,us, ..., un)

Rn+1

d(HmL X @) ((u1,ugz, - .., Un),up),
=1
where = means that if one side exists, then both sides exist and the two
values are equal.

Let ¢ be a probability measure on (R, B(R)). Let n be a non-negative
integer. Let X be a R"*-valued measurable function on (C[0, ], B(C|0,
1)), w,). We write Px for a measure on (R™*1, B(R™*!)) determined by
X, that is,

(2.18) Px(B) = wo(X™N(B))
for E in B(R™*1). If X( ) = z(t), then

— = [ [ ewt- E =Ty g (€)dptun)

Let Z be an integrable function on (C[O,t],B(C’[O,t]),w@. The con-
ditional w,-integral of Z given X, written £“%(Z|X), is defined to be
any real-valued Borel measurable and Px-integrable function 4 on R™t!
such that

(2.20) Jos iy 7@ = [ v©0aPx (0

for H in B(R). By the Radon-Nikodym theorem, we know that such a
function @ always exists.

In this paper, we will treat the case X : C[0,¢] — R given by X(z) =
z(t). We can easily check the following two facts by the definition of
Ev»(Z|X). If Z; and Z; are bounded measurable then for a,b in R,

E“¢(aZy + bZs| X) = aE“* (Z1|X) + bE“* (Z| X)

(2.19)  Px(E)
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and if Z, and Zy are real-valued bounded measurable with Z; < Z,
wy-a.e. and ¢ is a probability measure then E“#(Z;|X) < E¥¢(Z3|X)
my-~a.e.

From Yeh’s paper in [25], we have the following lemma.

LEMMA 2.3. Let Y be an integrable function on (C|0,t], B(C[0,1]),
wy). If fC[O 1 e X@Y (z) dw,(z) is a Lebesgue integrable function of u
in R, E“(Y|X) is given by

B (Y1X)(©) 32(6)

_L e_iug(/ e X @y (z) dep(:c)> dmip(u).
2 Jr cloy]

By the elementary calculus, we obtain the following lemmas.

LEMMA 2.4. Let (2, B, P) be a probability measure space, and let
X, f and g be three real-valued measurable functions on € such that
fw) > g(w) > 0 for all w in Q. If [e X f(w) dP(w) is mp-
integrable of u, then [, e~“X@g(w) dP(w) is also mp-integrable.

LEMMA 2.5. For E in B(C[0,1]), [y, *@xp(z) duy(z) is a
Lebesgue integrable function of u.

From the above lemmas, we can easily check the following facts.

(1) For any simple function s on (C[0,t], B(C[0,4]),w.), Jeton e X @ g(z)
dw,(x) is a bounded continuous and Lebesgue integrable function of u.

(2) For any real-valued bounded measurable f on (C[0, ], B(C[0,]),w,),
Jepoy €X @ f(2) dw,(z) is a bounded and continuous and Lebesgue inte-
grable function of u.

(3) Let f be real-valued bounded measurable on (C[0,t], B(C[0,4]),w,)
and let (s,) be an increasing sequence of simple functions such that (s )
converges to f uniformly. Then ( fc[o,t] e X@s, (z) dw,(x)) converges
uniformly and converges to fo[o, 1l eX(@) f(z) dwy(x) in Li-norm sense.

(4) Since the Fourier transform from L;(R) to Co(R) is continuous,

</e_i“§/ emx(m)sn(m)dw‘p(az)dmL(u)>
R o
—>/ e‘i“€/ ei"X(x)f(a:)dw(p(w)dmL(u)

R Clo,]

as n — +00 in Ly-norm sense. Therefore (E“%(s,|X)(§)) converges to
B2 (f1X)(€) mr-ae.
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(5) Since E¥#(s,|X) and E¥#(f|X) are all in Li(R,my) for all n in
N, (E“#(s,|X)) converges to E“¢(f|X) in L;-norm sense. Using the
results in above, we obtain the following theorem.

THEOREM 2.6. Let f be real-valued bounded measurable on (C|0, t],
B(C[0,t])), and let (sp) be an increasing sequence of simple functions
on (C]0,t], B(C|0,t])) such that (s,) converges to f wy-a.e. . Then

[ B (r1%)(6) dPx(©) = tim [ B+ (sulX)(6) aPx(9).
E E

THEOREM 2.7. If a sequence {p,) of non-negative finite measures,
converges to ¢ in the sense of total variation norm then a sequence (w,,,)
converges to w,, in the total variation norm.

Proof. From [21, Theorem 4.3], we have

lwe, — th‘(C[O,t]) = |w‘Pn_‘P|(C[0’t]) = |on — ¢|(R),
so we have desired. O

From [2, p.20], we can find a sequence (P,) of measures on C[0,¢]
such that (P,) doesn’t converges to P weakly even though every finite
dimensional measures of P, converges to some finite dimensional mea-
sure of P weakly. Here, we want to find the conditions such that (w,, )
converges to w, weakly whenever (p,) converges to ¢ weakly.

LEMMA 2.8. Let X : [0,t] X C[0,t] — R be a function with X (s,z) =
z(s). Then

(1) X is a continuous stochastic process,

(2) if 0 =ty < t1 < -+~ < ty < t, then X(t;,-) — X(tj—1,7) (j =
1,2,...,n) are independent and

(3) for 0 < t1 < te < 't, X(t2,-) — X(t1,-) is normal distributed with
the mean zero and the variance ty — 7.

Proof. The statement (1) is clear from the definition of continuous
random variable. By [21, Example 3.3|, the statement (2) holds. We
will prove the statement (3).

Firstly, we treat the case t; = 0. Let y be in R. Let E = {(uo, u2)|uz—
ug < y}. Then {z|z(t2) — z(t1) < y} = {z|(z(0),z(¢2)) € E}. So, by
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[21, Theorem 2.2] and by the substitution of v = ug — ug,

p({z]x(te) — z(t1) <y})
uo+y (u —u )
(2.21) / / 27rt2eXp{ : 2, ° }dmL(U2)d'<p(u0)

:/_oo Tty p{ ;tZ}dmL()

So we proved the case t; = 0. Now we suppose 0 < #;. Let y be in R.
Let E = {(u1,u2)|ug—u1 < y}. Then by the substitution of v = ug —us,

wo({zlz(t2) — z(t1) <y})

//\/27r)2(t2—t1 p{_(l%}

(2.22) ur+y U — u1)2
/ exp{ B———1)}dmL(uz)dmL(ul)dc,o(ug)
00 2(t2 - tl)
v? }
— ———— 2dmp(v),
/ \/zmg =) { 26— )
so we proved the case t; > 0 as desired. O

LEMMA 2.9. Under the assumptions in Lemma 2.8, for 0 < t; <t
and for € > 0,

62
o(lalompla() =00 < s <0 2 ) < 1y P - 21

Proof. Let S(x) = sup{m( ) — z(0)|0 < s < t1}. Then there exists
a dense sequence (s,) in [0,¢;] such that S(z) = sup{z(s,) — z(0)}.

n

Let S,(z) = max{z(sx) — z(0)|k = 1,2,...,n}. Then S,(z) — S(z)
we-a.e. z. Let us relabel s1,s9,...,8, a5 T, 1,Tn2,...,Tnn such that
Tno =0 < Th1 < Tho < - < T < t1. Let Xy j(x) = z(mny) —
(Tnj-1), 7 =1,2,...,n and Sy j(z) = Xn1(z) + -+ + Xy ;(z). Then
Sn.k(2) = 2(7y k) —2(0). Since Spr—Snn = 2(Tn k) —&(Tan), Snk—Snn
is normal distributed with the mean zero and the variance 7, — Ty £,
the median of S,y — Snn is zero. By Levy inequality [24, p.137], for
€ > 0, letting E. = {(uo,u1)|us — uo > €} and let uq — up = v,

(2.23) wo({z|Sn(z) > €}) < 2w, ({z|Snpn > €})
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= 2w, ({z(2(0), 2(Tn,n)) € Ec})

(1 — u)” }dmL(ul)dgo(uo)

ex: _
\/27{7'nn//+uo p{ 2Tnn

2

ﬂv?“/ [ e"p{ nn}dmL< )di(uo)

2

\/2——_/ vexp{ :_) }dmL(v)
TTh.n n,n

2Tnn 1 { € }
=4/ ———exp{ — .
T € 2Tan
Not only does S, (z) — S(z) a.e., but
{z|Sn(x) 2 €} — {2|S(z) 2 ¢}, ae,

wo({2|n(2) Z €}) = wp({2]5(2) > €}),

I/\

S0,

O

From the essentially same method as in the proof of Lemma 3 in [24,
p-256], we can prove the following lemma.

LEMMA 2.10. For € > 0 and A > 0,

oo ({olp o) ~ 201 < 1} ) = wcp({wloiltlfglw(t) —2(0)] < A})Z.

COROLLARY 2.11.
1/t 22 1 [ty A2
(g o-stor2}) 3B H (=3B ),

COROLLARY 2.12. For each positive € and 7, there exists a § with
0 < & < 1 such that for s1,sg in [0,1]

w({wllsiggdlx(so ~slsa)l 2 ¢} ) <n.

From [2, pp. 54-55], we find the following lemma.
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LeEMMA 2.13. The sequence (P,) of probability measures on C|[0, ]
is tight, that is, for positive € there exists a compact set K such that
P,(K) > 1 — € for all natural number n, if and only if

(i) for each positive 1, there exists an o such that
Fu({zl|z(0)] > a}) <7

. for all n and
(ii) for each positive € > 0 and 7, there exists a § with 0 < § < 1 and
a natural number ng such that for n > ng,
Po({z| sup [z(s1) —=z(s2)| 2 €}) <17

|31—$2|<5

LEMMA 2.14. Let P,, P be probability measures on (C[0, t], B(C[0, t])).
If the finite dimensional distributions of P, converge weakly to those of
P, and if {P,) is tight, then (P,) converges to P weakly.

By the above results, we have the following theorems.
THEOREM 2.15. Suppose (@) is tight. Then (w,,,) is also tight.

LEMMA 2.16. Let f : R™! — R be bounded continuous. Let t =
(to,t1,...,ts) be a vector in R"! withtg =0 < t; < --- ,t, < t and
let Jz: C[0,t] —» R™ be a function with J{x) = (z(to), z(t1), ..., z(tn)).
Suppose (@) converges to ¢ weakly. Then

lim f(uo,ul,...,un)dwg,mthl(uo,...,un)
m—oo Rn+1
= lim F(Jdz))dw,,, (z)

m—0o0 Joio4]
(2.24)

= lim fuo,uty. .. un)

1
"% Ja Jue o Vo6 — 60
exp{— Z (ut 1) }dH mr (U, ..., U )dem(ug).

J_tﬂl j=1

THEOREM 2.17. If (py) is tight and (pn) converges to ¢ weakly,
(wen,) converges to w, weakly.

For ¢ in M(R) and for B in B(C|0,t]), we let [V,(B)|(E) = wy(BN
X~Y(E)). Then V, is a measure-valued measure on (C|0,t], B(C0,]))
in the total variation norm sense.

From [21], we have the following theorem.
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THEOREM 2.18. Let ¢ be in M(R) and let t = (to,t1,...,tn) be a
vector in R" with0 =1ty < -+ <t, =t. Let f : R®™*! — C be a Borel
measurable function such that f(ug,uy,...,un)W(n + 1;ug,. .., un)
is || % H;;l mp-integrable. Let F : C[0,t] — C be a function with
F(z) = (f o Jp)(z) = f(z(to),x(t1),...,2(tn)). Then F is V,-Bartle
integrable on C[0,t] and for E in B(R),

o)~ [ L F@ Wy(2)| ()

(2.25) = /E{/Rn—l (/Rf(uo,ul,...,un)W(n-f—1;f§uo,...,un)

n—1
: dSO(Uo)) ad(I] mL)(ula---aun—l)} dmi(un).
j=1

3. The generalized Dyson series and Volterras’s integral
equation

The purpose of this section is to establish the existence theorem of the
generalized Dyson series associated with a measure-valued measure V,,
and is to show that it satisfies an integral equation, similar to Volterra’s
integral equation, under the some conditions for given functions.

Recently, the authors derived the Feynman-Kac formula associated
with a measure valued measure V,, in [21] and proved that this formula
satisfies the Volterra-type integral equation. Here, we will prove the
existence theorem of the generalized Dyson series associated with V.
However, the solution of Volterra’s equation is unique in usual case, we
will show that our Dyson series for given many analytic functions satisfy
the Volterra-type integral equation.

By Theorem 2 in [23], we can easily check the following lemma.

LeMMA 3.1. Let (F,) be a sequence of bounded measurable functions
n (C[0,t], B(C[0,¢])). If 3.2 | F converges to F unconditionally in the
uniform convergence topology. Then

oo

(3.1) S Ba)— [ Fux) V()

nel Clo,e]

converges to
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(32) (B@—i/ F(z) dV,,(x)
clo,Y]

in the total variation norm sense.

Proof. Letting T(F) = fC[o ; ) dV,,(z) for bounded mea-
surable function F on (C [0 t] (CJo, t])) since V,, is bounded variation
by Remark 4.1 (4) of [21], T is absolutely summing operator, so we have
our result. O

Let 7 = p + v be a complex-valued Borel measure such that yu is the
continuous part of n and v = Zp—o Cpbr,, where 0 = 19 < 71 < 72 <
- <m,=tand ¢, (p=0,1,...,n) are complex numbers.
Using the parallel method as in the proof of Lemma 5.3, Theorem 5.4
and the proof of Theorem 5.5 in [21], we have following theorem.

THEOREM 3.2. Let g be an analytic function with the radius of con-
vergence || 0 ||pso0,1m, say 9(2) = 3o amz™. Then (Ba)— [y 4 9(60(s,
z(s))) dn(s) is Bartle integrable and for E in B(R),

[(Ba) - / p ( / (s, 2(s)) dn(8)> V()| (E)
Clo,t] [0,¢]
= O Ay
amml _n_—
3 3) m=0 q0+"'+qn+1=m Hp:o qp. jl+"'+jn=Q'n+1 Aqn+1;j1 """ Jn

[(Ln © Ln-10--- 0 L1)(T(s1,1, »,6(0,-)%))|(E)

d(fifiu>@Lh”.Jm%).

Here, for k =2,3,...,n

Ly = Mpy(rya © Sr—sy,;, © My
oS,

8k,j _sk,jk—l

Sk,gp,)

"0 Mp(sy,1) © Ssi1—si0
and

L1 = Mp(ryyn © Srisyj; © Mo(sy ;) © Sor sy =15y 1 © " © Mo(syy)-
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Moreover,

(R)

(Ba) / g( 6(s,2(s)) dn(S)) dV,y(z)
Clo,] [0,¢]

(3.4) -
< 4l R laml 1| 0 150,10 -
m=0

Proof. From Theorem 2.18, we have (Ba)——fc[o 3 K dVe(z) = KSi(p)
for any constant K. Let m be a natural number. By Theorem 2.3,

Lemma 5.2, Lemma 5.3, Theorem 5.4 and Theorem 5.5 in [21], ( f[o 9 6(s,
m

z(s)) dn(s)) is Bartle integrable with respect to V,, and

Ba) —/ (/ 0(s,z(s)) dn(s)) dV(x)
Clo,t] [0,¢]

< 4l (R)[ 6 l1Gi00,150) -

Since the series g has the radius of convergence greater than || 6 |,:00,1;1,
the series

(R)

(3.5)

(36) Z |am| ” 0 ”glgoo,l;n

m=0
converges absolutely. Since every absolutely convergent series is uncon-
ditionally convergent series, by Lemma 3.1, we have equality (3.3). The
proof of rest part is trivial. _ ]

In [21], we established the measure-valued Feynman-Kac formula,
a kind of extension of the classical Feynman-Kac formula and showed
that it satisfies a Volterra-type integral equation. Here, setting gi(u) =

S T—rll—!um for any natural number k, fC[O 4 9k (f[o f 6(s, z(s)) dn(s))
dV,(z) satisfies a Volterra-type integral equation. In the other word,
the solution of Volterra’s integral equation is unique in the usual case

but in our case, there are solutions of a Volterra-type integral equation.

THEOREM 3.3. Let0=7'0<7'1<7'2<-~-<Tn<t<fandletnbe

a Borel measure on (0, t] such that n = p+ v, where p is the continuous

part of n and v =37 cpdr,,. Furthermore, let 6 be in L?p;oo’lm and let

an  wt)=@B)- [ o { /[0 OO dn<s>} V()

0]
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fort <t <% Fort<t <t ult) sat1sﬁes a Volterra-type integral
equation, that is,

(38)  ult) = Sy-i(u(®) + (Bo) ~ |  (Su-so Mygo)u(s) duts).

(t.t]

Proof. Using the parallel method as in the proof of Theorem 6.1 in
[21], so, we give a sketch of proof of our theorem. By Corollary 5.8 [21],
fort < s <t,

o0

u) = 33 ﬁ';i > (B9

m=k go++gnt1=m D iiteting1=gns1

ey -/, Sumsmtt i © Moonss)
A'~1n+1 3310 -7n+1
"0 Ssn+1 1~5n+1,0 © Lpo---o Ll](T(Sl,l’ ®, (0, ,)qo))

n+l Ji
d( IT11I M) (81,15 s Sntlyjns1)s

i=1 j=1

(s) - — -
where Aqn+1:.71, dnl {(31,1,---,3n+1,jn+1) ’ 0 = 80,0 = To < 81,1 <
c< 815, <TL <821 <00 < Ty < Spy11 < o < Sngljngy < 8 ) and

for k=1,2,...,n, Ly is given in Theorem 5.5 [21]. For t < s < t, let

Y (8590, @nt13J1, -+ -5 Jnt1)

= (BO) et ) [SS—Sn+1,jn+1 o M9(5n+1,jn+1) [¢]
An413J11dn+1

(3.10) 0Ssn111—8n41,0 © L © -+ 0 L]

n+1 J‘L
(T(Sl 1,¢,0 < H HN) (s1,1,-- ,3n+1,jn+1)'

i=1 j=1
For t <t <t let
o Hn
= CP
ul(t/) = Z Z JL_Y(t')Q(), --aqn50;0>03-">0)7
m=k go+--+qn=m 11p=0 %!
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00 n dp
we) = 3 Y g%
m=k go++gnp1=m L P=0P Gt g
Gn+121

Y(tIJQO, e. aQann+l§jla v 7j’na O)?

o0 n dp
t, _ Hpv-()cp
ug(t’) = H !
ma=k+1got-+an1=m P AP=0IP 44 L =gnt
qn+12>1 Jnt121

Y (590, -, @nt1; J1s e - - s Jnt1)-
Then

Ui (t’) + uo (t/)

[w's] " qp
311) = St,_t(z ) g‘zz

m=k go+-+gn+1=m

X Z Y(t’;qu--->QnaQ’rl+l;jl)'"ajﬂ))
Jit+Hin=gnt1

= Sy_¢(u(?)).
And

©12) (Bo)— [ (om0 M) (u(s) du(s)

YELT M, T

m=k go+--+gny1=m JitFint1=n+1

—~
~

- (St'—s o MB(S))(Y(S) qo, - - - 79n+1§j1a .. ajn+1)) dﬂ(s)

()

o] n Ip
2y v =% 5
m=k go-+++qnit1=m Hp—-() (Ip F1t+Fin41=qn41
Y(t,;QO, <o Qn4d + 1;j17 v :jn+1 + 1)

o0

o 5y Ded 5

m=k+1 g gty =m Howo 5! Bt i =
I, roL .7
Y(t 34y - - 7qn+17 Jis--- a]n+1)
’
= ug(t).
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Step (1) follows from (3.3). By an elementary calculation, we have Step
(2). If goy1 > k+ 1 then the condition “m = k” has no meaning, so
by making the substitution ; j; = j; (1 < ¢ < n), jusa +1 = 4,
¢=q¢ (1<i<n),guy1+1=¢q),, and m+1=m', we obtain Step
(3).

Hence, for t < ¢ < ¢,

u(t’)
(3.13) = (ur(t') + ua(t)) + us(t)
= Su-t{u(®) + (Bo) — [ (Sy-s0 Magy)(u(s)) dus)
]
as desired. O

COROLLARY 3.4. Under the assumptions in Theorem 3.3 and we
assume that 1 = p, an arbitrary continuous measure on [0,t], for 0 <
t' <t, u(t') satisfles a Volterra integral equation, that is,

(3.14) u(t) = (Bo)— /(0 J (Sims 0 Mare)(5) i)

COROLLARY 3.5. Under the assumptions in Theorem 3.3 and we
assume that n = v = Z;;O ¢pdr,, a discrete measure on [0,1], for 0 <

t' <1,

7 bt Hn=0 CZP
u(t ) = Z Z ———[Stl_t o Me(Tn)q"‘ © STn—Tn—l O

m=k go++gn=m ITp-0 %!
(3.15) 08,5 © Mg(Tl)ql](T(Tl, ©,0(0,-)%)),
(3.16) u(t) = Sy_i(u(t))
and

(Bo) = | (Sums© Mot (u(s) diso)

= 0, the zero operator.

(3.17)
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4. A new formula for the Bartle integral with respect to a
vector measure V,

In this section, we will show that the Bartle integral with respect
to V,, can be written as an iterated integral with respect to a complex-
valued measure. From this, we recognize the relation between the Bartle
integral and the conditional w,-integral (see [22]).

THEOREM 4.1. Let ¢ be a probability measure on (R, B(R)) and let
f be bounded measurable on (C[0,t], B(C[0,t])). Then

((Ba) - /C @ W]

- / B (f1X)(€) dPx(¢)
(4.1)
= / B (fX0(© 5 ) dm (€
. —ity zuzt) ) dw m m
_ // s/Ot] F(@) dwy(z) dmy(u) dmp(€)
for E in B(R).

Proof. Let f be bounded measurable on (C[0,t], B(C[0,t])). Then
there is an increasing sequence (s,,) of simple functions on (C|[0, ¢], B(C|0,
t])) such that (s,) converges to f. By the basic properties of Bartle
integral and Lebesgue integral, we have .

[(Ba) - /C e dV,,()] (E)
4y = / B (50, X)(6) dm(©)

- / / ~igu / 05, (2) duy(2) dmy(u) dmy(€)
Cl0,¢]
for E in B(R). Hence for F in B(R),

[(Ba) - /C @ )] )

Dliim [ sae) AV (@)} (B)

e Jolgt)

@ im [ sn(z) dV,(2)](E)

nmeenJeg]
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(3) - —i€u wz‘
lim // /C[Ot] ) dwy(z) dmp(u) dm(§)

n—oo 271

@i . zua:(t)
B /Enl-l—»nolo / /C[O t] ) deg(w) dma(1)) dme Q)
(5) 1 / / —1§u lim e—zuw(t)sn(m) dw¢(w)) dmp(u) dmgp ()

© 1 / / —igu / lim emw(t)s (z) dw,(z) dmp(u) dmr(€)

0 t] n—oo

l — —ifu iuz(t)
- 2 x/E /R ¢ /C[O,t] € t f(l') d"‘)‘P(m) dmL (U) dmL(E)

Step (1) results from the dominated convergence theorem for Bartle in-
tegral. Step (2) follows from the Vitali-Hahn-Saks theorem. From the
above equality (4.2), we obtain Step (3). By Theorem 2.6, we have Step
(4). Step (5) is true because the Fourier transform from L;(R) to Cp(R),
the space of all continuous function on R which vanish zero as approach
to o0, is a bounded operator. Step (6) holds by the dominated conver-
gence theorem for Lebesgue integral and Step (7) is trivial. By Lemma
2.3, we obtain the equalities (4.1). O

For a non-negative finite real valued measure in M(R), let oV be
a normalized measure of ¢, that is, ¢"V(E) = @ffk)) for E in B(R) if
¢ is a non-zero measure and ¢V is a zero measure if ¢ is a zero mea-
sure. For ¢ in M(R) with the Jordan decomposition ¢ = 2;21 a;;,
Wy = 2?:1 ajwy,; and for j =1,2,3,4, w,, = |goj|(]R)cp§V. Hence, for
¢ in M(R) with the Jordan decomposition ¢ = Z§=1 ajpj, for B in
B(C|0,t]) and for E in B(R),

[Vo(B)](B) =3 ajw,, (BN JZH(E))

o51j|(R)w,x (B N J7(E))

=1
4
=[>_ a;V,,(B)](E).

THEOREM 4.2. Let ¢ in M(R) and for a bounded measurable func-
tion f on (C[0,t], B(C[0,¢])). Then
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[(Ba) - /C 1@ @]E)
- /E E@e (]X)(€) dPx(€)
/ B4 (120)(©) 5 (6) dma©)
/ / -igu / e0) £ () dug(z) dmu () dmi(€)
clo,i]

for E in B(R).

(4.5)

Proof. From Theorem 4.1, we have

(Ba)— [ @) V@] (P)
4
= (Lalel®Ea) - [ 1) @] (5)
(4.6) Z ;s (R

// —zﬁu/ o ™) f(z)dw N( Ydmp (u)dmr(§)
= o /E /R e /C[o,t] "0 f(2) dw,(z) dm(u) dmy (€),

as desired. The rest part of the proof is trivial from Lemma 2.3. O

REMARK 4.3. Putting ¢ = dg, w, = w, the classical Wiener measure
and

[(Ba) - /C oy 1) V@) ()
_ i e—iﬁu 6'iuz:(t) ) dw. () dmy (u) dm
g Joe [ €O o) dma o) e
- /E E“e (£|X)(€) dmy(€)

- / f(z) dw(z).
X-1(E)

Here f is a bounded measurable function and E is in B(R).

(4.7)
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5. The stability theorems

In this section, we will concern with the stability theorems for mea-
sure valued Dyson series, given in Section 3.

5.1. The stability theorem for a convergent sequence (@)
in the total variation norm sense

In this part, we will concern with the stability theorem for total
variation norm convergent sequence {¢p,).

THEOREM 5.1. Let (p,) be a sequence in M(R) which converges
to o in the total variation norm sense. If F' is bounded measurable on

C[0,¢] then <fc[0,t] F(z) dV,,,(x)) converges to fC[o,t] F(z) dVy(z) in the
total variation norm sense.

Proof. Let F be bounded by K. Then

(5.1) F(z) dV,,, (x) — F(z) dVy(x)
clo, Clo,]
< K|V, = Vel
= K| Vool
< 4K|pnp—¢| — 0.
as n — 00, so, the proof is finished. O

THEOREM 5.2. Let (p,) be a sequence in M(R) which converges to
o in the total variation norm sense. Let 6 be in N3 L, .c0,1:n Such that
(|l 8(0,-) {ln:o0) is bounded. Then 0 belongs to L;eo,1:n-

Proof. We let Ay = {€ in R||6(0,€)| > A} for each positive real
number A. For each natural number n, let B, x = {\ > 0||¢n|(Ax) = 0}
and let By = {\ > 0||¢|(Ax) = 0}. We suppose that g is a positive real
number and (n,) is a subsequence of (n) such that |¢n,|(Ax,) = 0 for
all u in N. Then since (Jp,|(E)) converges to |¢|(E) for all E in B(R),
|o|(Ax) = 0 which implies that US>, N2 By is a subset of B. Now, we
assume that inf(US2, N B) > lim inf || 6(0,") [|p,:00- We can pick v
such that lim inf || 6(0,-) |lpni0 < v < inf(UZ, MRS, Bx). Then there

n—oc
is a convergent subsequence (|| 6(0,-) |/pn,;00) Of (|| 6(0,-) |lpn;00) Such
that lim [ (0, ) llpnysee= lim inf | 0(0,") lipui0 and || 60, ) llpn, < v
for all w in N. So, we obtain )i\r;%Bnm,\ < v for all w in N. Since B,, j is an

interval, there is a positive real number Ay < v such that X, is belong to
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Ug2, N2, By, which is contradicted by v < inf(Us2; Ng2,. By). Hence
we have Up2 Mg, Bx < hm inf || 6(0,) ||lpn;o0- Therefore

|| 6 ”cp;oo,lm

_ /[ 11660l dirl(e)

,t

1600, llgo [11({0}) /(0 196 o din(s)

(5.2)
< GEBY) (0D [ 1006, o (5
< (lim inf || 000,") lpmio ) I11({O)
[ 185, g ditl(9) < oo,
(0,¢]
as desired. O

THEOREM 5.3. (The stability theorem for convergence of (¢,) in
the total variation norm sense) Under the assumptions of Theorem
5.2, let g be analytic with a radius of convergence less than K =
2sup({l| 0 |lpn;io0,1:n In € N}U{|| 6 |lp;00,1n}). Then the sequence
((Ba) fC[Ot f[o 1 (s,z(s))dn(s))dV,, (z)) of measures on (R, B(R)),

converges to a measure (Ba)— 0,49 (f[o 1 (s, z(s))dn(s))dV,(x) in the
total variation norm sense.

Proof. From Theorem 5.1 in [21, p.4938],

l9( [ 8(s,a())dn(s))| < Zlan| (116 llgio15n)"

[0,¢]

for |w,|-a.e. x and for any natural number %,

ol

for wy, |-a.e. z. Since || V,, || (B) < |wy|(B) for B in B(C[0, t]), by The-
orem 5 1 the Bartle 1ntegral (Ba) — fc[o ; (f[O,t] 0(s,z(s))dn(s))dV,(z)
and (Ba) — [o10.4 90,9 (s, (s))dn(s ))dV<pk(:v), k € N exist. Clearly,

| 0(s, ) ||<Pk —p;00 <[ 6(s,") ||<pk,oo + || 6(s,) ||<p;007 | @ Hcpk—<p;oo,1m <

[0,¢]

6(s,(s))dn(s))| < 3 lanl (1| 0 llouiooin )"
n=0
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I 0 lgso0,15m + 1| € lgs00,1n < K. So from Theorem 5.1,

)= [ o [ ot ointe) ) aveuto
= [ o [ otsateinto)av @] =)

63 =B [ t]g( O AT

< 4 op —pl(R Zlanl 10 lox—ps00,1)"

n=0
< 4ok —ol(R) D |an|K™ — 0,
n=0
as k — +oc, as desired. O

From Theorem 5.3, directly we have the following corollary.

COROLLARY 5.4. Suppose ¢ = ¢° + ¢% where ¢° is the continuous
part of ¢ and ¢? is the discrete part of . For each natural number n,
we let o, = ¢° + ZZ=1 cpdr,. Let 6 be in Ly 1,y and let g be analytic
having a radius of convergence Iess than 216 ||¢;oo,1;7,, say g(u) =
Yoo _gamu™. Then the sequence ( fC[Ot f[o 4 0(s, x(s))dn( ))
dV,, (z)) of measures on (R, B(R)), converges to (Ba) fC[o 19 f[o 1
x(s))dn(s))dV, (x) in the total variation norm sense. Moreover, for each
natural number n,

By [ o[ otss@n)avi, @

(5.4 ~a- [ o(f ]9<s,x(s))dn(s))dw(m)i(R)
Z lepl (1 6l ps00,1m)7) Z lanl(ll 8 lpio0,15)"™)-
p=n+1

5.2. The stability theorem for convergence of (yp,) weakly
In this part, we will establish the stability theorem for weakly con-
vergent sequence ().

THEOREM 5.5. Let F' be a bounded continuous on C[0,t]. We sup-
pose (pn) is tight and is a weakly convergent sequence () to . For
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a closed set E in R such that for the closed continuity set E, ([(Ba) —
Joo, F(2) dV,,,(z)](E)) converges to [(Ba) ~ Jop,g F(2) dVy ()| (B).

Proof. Let b(B) the set of all boundary points of B for B in B(R).
Let E be a closed continuity set. Then X 1(E) is closed and X~(E —
b(E)) is open in C[0,t]. Since boundary points of X ~1(E) contained
in X71(E — b(B)), X~(E) is a closed continuity set. From Theorem
2.17, we have (w,,,) converges to w, weakly. Since E — b(B) is my-null,
wye(X~1(E — b(B))) = 0. Hence, by Helly’s theorem [1, p.81],

nli_)m F(z)dw,, () =/ F(z)dwy,(x).
2 Jx-1(5) X-1(B)

By Theorem 4.1, <[(Ba)_f0[0,t] F(z) dV,, ()] (E)) converges to [(Ba)—

fc[o,t] F(z) chp(-'E)] (E). a

The following corollary follows from Theorem 5.5.

COROLLARY 5.6. (The stability theorem for weakly convergent se-
quence (ypn)) We suppose {py) Is tight and is a weakly convergent se-
quence (pn) to . Let 8 be bounded continuous on [0,t] x C|0,t] and
let g be an analytic function with the norm the radius of convergence
| 0 llpi00,15m, Say g(2) = > amz™. Then for each closed continuity set

E of p, <[(Ba)_f0[o,t] g( f[o,t] 6(s, x(s))dn(s))dV%(x)] (E)) converges to
((Ba) = o0 90,0 65, 2(5))dn(s))dV, ()| (B).

Using Theorem 4.2 and Theorem 5.5, we have the following corollary.

COROLLARY 5.7. (The bounded convergence theorem) We suppose
(¢n) is tight and is a weakly convergent sequence () to ¢. For a closed
continuity subset E of R for ¢, and for a bounded continuous function
f on C|0,1],

i —~i€u uz(t)
o /E /]R ‘ /C[O,t] € f(@)dwe, (z)dmy (w)dmp (€)

n—oo

- /E /R g wu /C o e"=® f () dw,, (x)dmy (u)dmy,(€).
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5.3. The stability theorem for convergent sequence (7n,) in
the total variation norm sense

In this part, we will establish the stability theorem for convergent
sequence (n,) of measures on ([0, t], B([0,t])) in the total variation norm
sense.

THEOREM 5.8. Let (n,) be a sequence of measures on ([0,t],B([0,t]))
in the total variation norm sense. Let 6 be a bounded Borel measur-
able function on [0,t], bounded by K and let g be analytic having a
disk of convergence containing {z : |z| < 2K sup{|n|(R) : n € N}}.
Suppose that a sequence (n,) of measures on ([0,t], B ([0,t])), con-
verges to 1 in the total variation norm sense. Then the sequence ((Ba)-

fC[O,t] g(f[o,t] (s, z(s))dnn(s))dV(x)) converges to

(Ba) - / ol (s, 2(s))dn(s))dV(x)
C[0,t] [0,]

in the total variation norm sense.
Moreover, for a natural number n,

|(Ba) - /C [O’t]g( /[0 , H(S,x(s))dnn(s)>dV<p(m)

~wa)= [ o [, #0e5teants) ) avii|®)
< 4 Culol(®).

(5.5)

Here C,, = sup{|g(z1) — g(22)| : |z1| < Kl|nn — n[([0,¢]) and |zo| <
K|nn —n|([0,t])}

Proof. For || V,, ||l-a.e. = and for a natural number »,

[ 0(s,a(s))dms) - / 0(s, 2(s))d(s))
[0,4] [0,4]

(5.6) =| [ 8s,2())dlm — ()
0.
< K |nn —n|([0,1]),

o [ 0o, eim() ~o( [ 0ts,z(e)ants)]| <
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Therefore,
((Ba) —/ g( G(S,x(s))dnn(s))dV‘p(x)
clod Jo

(5'7) — (Da) — s, x(s S T
(Ba) = [ ([ 00s2(6)n(s) (o]
< Co || Vi | (R) < 4 Culo|(R).

Since g is uniformly continuous in the closed disk |z| < K and lim |9, —
n—oo
n(([0,¢]) =0, lim C,, =0, as desired. n
n—o0

COROLLARY 5.9. (The stability theorem for convergent sequence
(nn) in the total variation norm sense) Under the assumption of The-
orem 5.8, let n = p + v be a complex Borel measure on [0,t] such
that u is the continuous part of n and v = Ep:[) ¢pdr,. For a natu-
ral number n, let o, : {0,1,2,...,n} — {0,1,2,...,n} be a bijection
with 0 = 750) < To1) <+ < Tom) < 8, let n, = p+ Z;L:l CpOr,
where (cp) is summable Then (nn) converges to n in the total vari-
ation norm sense and (Ba) — [504 9 (f[O,t] 0(s,z(s))dn(s)) dV,(z) and
(Ba) — fc[o,t] g(f[o’t] s m(s))dnn(s)) dV,(z) (n € N) exist.

Moreover, { Ba)‘fo[o,t] g( f[O,t] 0(s, z(s))dnn(s))dV,(z)) converges to
(Ba) — fCOt (f[o,t] 8(s, z(s))dn(s))dV,(x) in the total variation norm
sense and

’(Ba)—/COt g( o B(S,x(s))dnn(s))de(:r)

(5.8) — (Ba) — s,x(s s z
Be) = [ ol [ 0lsa(s)ine)av,(a] ®)
< 4 Colg|(R).

The sequence, given by right side of (3.3) from the changing p, T, and n to
on(D); Ton(p) and 1, respectively, converges to (Ba) — fC[o a9( f[o 4 0(s
z(s))dn(s))dV,(z), in the total variation norm sense.

5.4. The stability theorem for weakly convergent sequence
(M)

In this part, we prove the stability theorem for a weakly convergence
sequence {7, ) of measures on ([0, t], B([0, t])).

THEOREM 5.10. (The stability theorem for weakly convergent se-
quence (n,)) Let (n,) be a bounded sequence such that (n,) converges
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to n weakly. Suppose {(|n,|([0,t])) is a bounded sequence. Let 6 be a
bounded continuous function on [0,t], bounded by K on [0,t] X R. Let
g be an analytic function. Then for n € N, the Bartle integral

(5.9) (Ba) /O g g( K m(s))dn(s)) dv,(z)
and
610) (8o~ [ Mg( Me(s,x(s>>dnn<s>)dv¢<m>,

exist and the sequence ((Ba)—fc[o’t]g(f[o’t] 8(s, z(s))dnn(s))dV,(z)) of
measures on (R, B(R)) converges to (Ba)—fc[o,t] 9(Jjo 9 9(s,z(5))dn(s))
dV,(z) in the total variation norm sense.

Proof. We suppose sup{|7,|([0,t])|n € N} < M. Then | f[O,t] (s, z(s))
dnn(s)] < K Ina|([0,1}) < KM. Setting g(2) = Zoamzm, 19 fio.4 9(s,
m=l

2(5))d(5)] € 3 lam| (KM)™. Since Jetoq € V() = ¢ Vio(CI0, 1)) =

cSi(yp) for a congtzgt ¢, the Bartle integrals (5.9) and (5.10), in our the-
orem, exist. By the dominated convergence theorem for Bartle integral,
we obtain that a sequence ((Ba)-fc[o’t] g(f[o’t] (s, z(s))dnn(s) )dV,(x))
of measures on (R, B(R)), converges to (Ba)'fc*[o,t] g(f[()’t] (s, z(s))dn(s))
dV,(z) in the total variation norm sense. O

5.5. The stability theorem for potential functions

In this part, we treat the stability theorem for potential functions.

THEOREM 5.10. (The stability theorem for potential function) Let 8
be in Ly;s0,1;n and let (,) be a sequence of Borel measurable functions
on [0,t] x R such that || 6,(-,*) |lp:co< || 8 |0 01 [0,8] X R and (6y)
converge to 8. Let g be an analytic function having a radius of conver-
gence less then || 6 ||pic0,1;y- Then 6 and 6,, n € N, belong to Ly, 15
and a sequence <f0[0,t]9 (f[O,t] 0,.(s,z(s)) dn(s)) dV, (x)) converges to
fC[O,t] 9( f[o,t] 6(s,z(s)) dn(s)) dV,(x) in the total variation norm sense.

Proof. Clearly, 6§ and 8,, n € N, belong to Ly.,1;,. By the dominated
convergence theorem, lim f{o,t] On(s,2(s))dn(s) = f[o 1 0(s,z(s))dn(s).
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Since g(2) is continuous in |2| <|| 8 || 00,1

lim / (s, 2(s))dn(s))

(5.11) B
= o(lim, [ n(s,0(5))in(s).
By the dominated convergence theorem for Bartle integral,
im [ o [ tnls.ao)ants))av(e)
= / lim g( Hn(s,:r(s))dn(s)> dV,(z).
clog " [0,4]
as desired. O
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