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THE GROUPS OF SELF PAIR
HOMOTOPY EQUIVALENCES

KEE-YOUNG LEE

ABSTRACT. In this paper, we extend the concept of the group £(X)
of self homotopy equivalences of a space X to that of an object in
the category of pairs. Mainly, we study the group £(X, A) of pair
homotopy equivalences from a CW-pair (X, A) to itself which is
the special case of the extended concept. For a CW-pair (X, A),
we find an exact sequence 1 — G — £(X, A) — £(A) where G is a
subgroup of £(X, A). Especially, for CW homotopy associative and
inversive H-spaces X and Y, we obtain a split short exact sequence
1 = E(X) - EX xY,Y) - EY) — 1 provided the two sets
[X AY,X x Y] and [X,Y] are trivial.

1. Introduction and preliminaries

Let X be a connected CW-complex with the base point * and £(X)
the set of homotopy classes of self homotopy equivalences of X. Then
the set £(X) is a group with group operation given by composition of
homotopy classes. This group has been studied by several authors. For
instances, M. Arkowitz [1], K. Maruyama [4], S. Oka [5], J. Rutter [6],
N. Sawashita (8], A. Sieradski [10] and K. Tsukiyama [12], et al..

It is a well-known fact that £(S™) = Zy and E(K(m,n)) = Aut(r)
where K (w,n) is an Eilenberg-Mclane space and Aut(w) is the group of
automorphisms on 7.

In this paper, we extend the concept of the group of self homotopy
equivalences of a space to that of a map as an object in the category of
pairs.

In the category of pairs, the “objects” are maps (X71,x) — (X2, %)
and “morphism” from o : X3 — Xy to 8: Y, — Yz is a pair of maps
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(f1, f2) such that the diagram

fil 1f2
Y; 7; Y

is commutative, i.e., Bf1 = foa. A homotopy of (fi, f2) is just a pair
of homotopies (fit, for) such that Gfi; = foso. This category reduces to
the category of ordinary pairs of spaces (with base point) if we restrict
ourselves to maps « which are inclusions. If (fi, fa) is homotopic to
(91,92) by the homotopy (fit, fa:), we denote by

(flt:th) : (fl7f2) = (91,92)-

We denote by [f1, fo] the homotopy class of the morphism (f1, f2) :
a — 3 and by II(a, ) the set of all homotopy classes from o to .
(f1, f2) is called a homotopy equivalent morphism, or simply a homotopy
equivalence if there is a morphism (g1, g2) such that (g1, g2) o (f1, f2) =
(idx,,idx,) and (f1, f2) o (g1, g2) ~ (idy, ,idy,). Such morphism (g1, g2)
is called a homotopy inverse of (f1, f2). Furthermore, (f1, f2) is called
a self homotopy equivalent morphism, or simply a self homotopy equiva-
lence if o = B and a self pair homotopy equivalent morphism or simply,
a self pair homotopy equivalence if « = f =1 : A — X is the inclusion.

For an object o, we define the subset £(a) of II(c, a) by

E(a) = {[f1, fo] € (e, @) | (f1, f2) is a homotopy equivalence}.
Especially, for a CW-pair (X, 4), if @ =1 : A — X is the inclusion, we
denote £(7) by £(X, A). We define the subset £(X, A;id4) by

E(X, A;ida) = {[ida, f] € E(X, A) | ida is the identity on A}.
In Section 2, we show that all these sets are groups, homotopy in-
variants in the category of pairs and generalizations of several concepts

of the group of self homotopy equivalences. As one of the main results,
we show that there exists an exact sequence

1 — E(X, Ajidy) — E(X, A) — E(A).
In Section 3, we obtain the conditions of the CW-pair (X, A) that the

above sequence is a short exact sequence or a split short exact sequence,
i.e., the following sequence is exact or split exact:

1 — (X, Ajida) — E(X,A) — E(A) — L.

In Section 4, we use the sequence in Section 3 and the method of
Sieradski [10] to obtain the following results.
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THEOREM 4.6. Let X andY be connected CW homotopy associative
and inversive H-spaces such that the two sets [X A\Y, X x Y] and [X,Y]
are trivial. Then there exists a split short exact sequence

1-E8X)-EX xYY)—-EY)— 1.
Especially, we have E(X x YY) 2 E(X)D E(Y) if E(X) and E(Y) are
abelian groups.

COROLLARY 4.7. For two cyclic groups H and G, let K(G,n) and
K(H,m) be Eilenberg-Maclane spaces with n > m > 1. Then we have

E(K(G,n) x K(H,m),K(H,m)) = Aut(G) & Aut(H),

where Aut(G) is the group of automorphisms on G.
Moreover,

E(S' x K(G,n),K(G,n)) = E(K(G,n) x S, 8%)
~ E(K(G,n) x §Y) = Zy @ Aut(G).

Throughout this paper, all spaces are based connected CW-complex-
es, all maps and all homotopies are based and all topological pairs are
CW-pairs.

2. The self homotopy equivalences in the category of pairs

In the first place, we show that the set £(a) has a group structure.

THEOREM 2.1. Let o : X1 — X3 be an object in the category of pairs.
Then the set £(a) has a group structure induced by the composition of
morphisms.

Proof. Let [f1, f2] and [g1, g2] be elements of £(«). Then

[f17f2] © [91792] = [flglan.gZ] € g(a)a

since (f191, f292) is a self homotopy equivalent morphism on a. For each
[f1, f2] € E(@), let (h1, h2) be a homotopy inverse morphism of (f1, f2).
Then [hi, ho| is the inverse element of [f1, f2]. Moreover, [idx,,idx,] is
the identity element of £(a). O

Next we show that the group £(a) is a homotopy invariant.

THEOREM 2.2 If o and 8 have same homotopy type, then £(a) and
&(B) are isomorphic.

Proof. Suppose that o : X3 — X5 and 8 : Y], — Y5 have the same
homotopy type by a homotopy equivalent morphism (ej,e3) : o — 3
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with the homotopy inverse morphism (ef,e5) : 3 — . Define ¥ :

E(a) — £(B) by
\Il[flaf2] = [(61,62) o (fl)fQ) ° (6,176/2)]'

Then ¥ is a homomorphism, since for each pair [f1, f2], {91, 92) € E(a),
we have

U([f1, fol o [g1:92]) = lerfrgier, ez fagaeh]
= [e1fi€le1g1€], e2faereagaes]
= [e1f1€}, e2faes] o [e1g1€7, eagaes]
= V[f1, fo] o ¥lg1, g2].

If we define a homomorphism ® : £(8) — &£(a) by ®[h, hy] =
[(e],€eh) o (ha, h2) o (e1,e2)], then ® is an inverse homomorphism of V.
Thus ¥ is an isomorphism. O

The group £(a) is called the group of the self homotopy equivalent
morphisms in the category of pairs. This group is a generalization of the
group of self homotopy equivalences for a space. This fact is explained
in the following remark.

REMARK. Let X be a CW-complex and o : *+ — X the constant
map. Then we have £(a) = £(X). For any self homotopy equivalence
f : X — X and any homotopy h; : X — X of f, (,f) is a self
homotopy equivalent morphism and (x, h;) is a homotopy of (x, f) from
a to itself. Thus we can identify [f] € £(X) with [*, f] € £(a). Similarly,
if @ : X — * is a constant map, then we have £(a) = £(X). Moreover,
for the identity map idx : X — X, we have £(idx) = £(X). Since for
any self homotopy equivalence f : X — X and for any homotopy h;
of f, (f,f) is a self homotopy equivalent morphism from idx to itself
and (hs, hy) is a homotopy of (f, f), we can identify [f] € £(X) to
(£, f] € E(idx).

For a CW-pair (X, A), if « =i : A — X is the inclusion, we denote
E(3) by £(X, A). If (f1, f2) is a morphism from the inclusion i to itself,
then fi]4 = fo. Thus we can consider the morphism (fi, f2) as the pair
map f1 : (X,A) — (X,A). So the group £(X, A) is just the group of
pair homotopy equivalences, i.e.,

E(X,A) = {[fllf : (X,A) — (X, A) is a pair homotopy equivalence}.
We define a subset £(X, A;ida) by
E(X,A;ida) = {[ida, f] € E(X, A) |id4 is the identity on A}.
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This subset is actually a subgroup of £(X, A).
PROPOSITION 2.3. £(X, A;id4) is a subgroup of £(X, A).

Proof. 1t is sufficient to show that for each element in £(X, A;ida),
it’s homotopy inverse element in £(X, A) belongs to £(X, A;id4) again.
Let [ida, f] € £(X, A;ida) and [h, g] be the inverse element of [id4, f]
in £(X, A). Since

(idAuf) ° (hag) = (h’a fo g) ~ (idAaidX)’
there exists a homotopy (Ha, H) : i X id; — ¢ between (h, f o g) and
(ida,idx). That is, the diagram
H

XxI — X

i xidy T T4

AxI — A
Hy

is commutative, H(z,0) = (f o g)(z), H(z,1) = z for all z € X,
Hy(a,0) = h(a), Ha(a,1) = a for all a € A and H(*,t) = x, where * is
the base point of X, ¢ : A — X is the inclusion and id; : [0,1] — [0,1]
is the identity.
Define amap gUH4: X x0UAXxI— X by
(QUHA)|xx0 =g and (gU Ha)|axsr =1Ha.
Since g(a) = h(a) = Hx4(a,0) for all a € A, gU H, is well-defined and
has an extension F': X x I — X. Thus we have
F(.’L‘,O) = g(l’),
F(a,0) = Ha(a,0) = h(a),
F(a,1) = Hq(a,1) = a,
F(x,t) = Hp(*,1) = *.
Let ¢' = F(-,1) : X — X. Then (h, g) is homotopic to (id4,g’) by the
homotopy (H4, F). Thus we have
[, 9] = [ida, g'] € E(X, Ajida).
O

Now we fit three groups £(X, A;id4), £(X, A) and £(A) together into
an exact sequence.

THEOREM 2.4. For a CW-pair (X, A), there exists an exact sequence
(1) 1 - E(X,A5idy) — E(X,A) — E(A).
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Proof. Let @ : £(X, A;ids) — E(X, A) be the inclusion. Then it is
trivial that ® is a monomorphism. Define ¥ : £(X, A) — £(A) by

Y[ f1, fo] = [f1]

for [f1, fo] € £(X, A). Then ¥ is well-defined. Let [fi1, f2] = [q1,92] €
E(X,A). Then there exists a homotopy (F|a, F) : ¢ X id;f — i between
(f1, f2) and (g1,92), where i : A — X is the inclusion and ¢d; is the
identity on the unit interval [0,1] . Since F|4 : f; ~ g1, we have

U(f1, fo] = [fi] = (1] = P[gn, g]-

Furthermore, ¥ is a homomorphism, since the group operations of £(X,
A) and £(A) are induced by the composition of maps.

Now we show the exactness at £(X, A). The image of ® is contained
in the kernel of ¥, since

Ud[idy, f] = Vlida, f] = [ida] € E(A).

Thus it remains for us to show that the kernel of ¥ is contained in the
image of ®. That is, each element [f1, fa] € £(X, A) such that [fi] =
[ida] € E(A) belongs to £(X, A;ida). Let [f1, f2] be such an element.
Since f; ~ id 4 relative to x in A, there exists a homotopy H : AxI — A
such that H(a,0) = fi(a), H(a,1) = a and H(*,t) = x. Then the map
foUiH : X x0U A X I — X defined by (fo UiH)|xxo = f2 and
(foUiH)|axs = iH has an extension F : X x I — X. Let f = F(-, 1).
Then, for each a € A, we have

Fl@) = Fla,1) = Ha, D) ~a.

So (ida, f) is a morphism from ¢ to itself, where i : A — X is the

inclusion . But (fi, f2) is homotopic to (id4, f) by the homotopy (H, F')
in the category of pairs. Therefore, (f1, fo] = [ida, f] € E(X, A;ida). O

3. Homotopy equivalence extendable pairs and a short exact
sequence

In this section, we will find certain sufficient conditions for the se-
quence (1) to be a short exact sequence or a split short exact sequence.

DEFINITION 3.1. A CW-pair (X, A) is called a homotopy equivalence
extendable pair if, for every homotopy equivalence f : A — A, there
exists a homotopy equivalence f : X — X such that (f,f) :i — i is a
self equivalent morphism in the category of pair, where ¢ : A — X is the
inclusion. In this case, f is called a homotopy equivalence extension of

f
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In the following proposition, we introduce a homotopical property of
homotopy equivalence extensions.

PROPOSITION 3.2. Let (X, A) be a homotopy equivalence extendable
pair, and f and g self homotopy equivalences on A. If f and g are
homotopic relative to , then there are homotopy equivalence extensions
f and g of f and g respectively such that (f, f) and (g,g) are homotopic
in the category of pairs.

Proof. Let H : Ax I — A be a homotopy between f and g. Then we
have H(a,0) = f(a), H(a,1) = g(a) and H(x,t) = *. Since (X, A) is a
homotopy equivalence extendable pair, there exists a homotopy equiva-
lence extension f: X — X of f. Define fUiH : X xOUAXT —» X
by (f UiH)|xxo = f and (f UiH)|axs = iH, where i : A — X is
the inclusion. Then it is well-defined, since f(a) = f(a) = H(a,0), for
each a € A. Since the inclusion ¢ : A — X is a cofibration, the map
(f UiH) has an extension H : X x I — X. Define g : X — X by

§(x) = H(=,1). Then g(a) = F(a,1) = H(a,1) = g(a). S0 (4,5) s a
morphism. Since 7 is homotopic to f by the homotopy H, g is a self
homotopy equivalence. Furthermore, we have (H, H) : (f, f) ~ (9,9),
since H o (i X id;) = i o H, where i : A — X is the inclusion. Therefore,

g is a homotopy equivalence extension of g. O

EXAMPLE 3.3. The pair (X, %) is a homotopy equivalence extendable
pair. More generally, if A is a strong deformation retract of X, the pair
(X, A) is a homotopy equivalence extendable pair. Let r : X — A be a
retraction and f a self homotopy equivalence on A. Thenio forisa
homotopy equivalence extension of f.

In the following theorem, we show that the homotopy equivalence
extendability is a sufficient condition for the sequence (1) to be a short
exact sequence.

THEOREM 3.4. If (X, A) is a homotopy equivalence extendable pair,
then we have the following short exact sequence:

2) 1— E(X, Aida) 5 £(X, 4) 5 £(4) — 1,

where ® is the inclusion and ¥ is a homomorphism defined by ¥[f, f] =

[£].
Proof. 1t is sufficient to show that ¥ is onto. Let [f] € £(A). By the

hypothesis and Proposition 3.2, there exists an element [f, f] € £(X, A).

Moreover, ¥[f, f] = [f] by the definitions of V. O
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In general, the sequence (2) is not split. But the sequence (2) is split
for some CW-pairs.

THEOREM 3.5. Let X and Y be CW-complexes. Then we have the
following split exact sequence:

(3) 1 - E(X x Y, Yyidy) 5 E(X x V,Y) -5 £(Y) = 1.

J

Proof. First, we show that (X x Y)Y is a homotopy equivalence
extendable pair. Let f : ¥ — Y be a homotopy equivalence. Then
the map idx x f : X XY — X x Y is a homotopy equivalence and
(fyidx x f) : i — i is a morphism in the category of pairs, where
i:Y — X xY is the inclusion given by i(y) = (*,y). Furthermore,
if g is a homotopy inverse, then (g,idx x g) is a homotopy inverse of
(f,idx X f). So idx x f is a homotopy equivalence extension of f.

Define J : £(Y) — E(X x Y,Y) by J[f] = [f,idx x f]. Then J
is well-defined. In fact, if H : Y x I — Y is a homotopy between f
and g, then the pair (H,idx x H) : i % id; — 4 is a homotopy between
(f,idx x f) and (g,idx X g) in the category of pairs.

Moreover, J is a homomorphism, since

J([f1-lg]) = Jlfogl=I[fog idx x (fog)]
= [fog,(idx x f)o(idx X g)]
= [f,idx x f]-|g,idx x g]
= J[f]- Jlgl.
By the definitions of ¥ and J, ¥ o J = idg(yy. So the sequence (3) is
split. O

Theorem 3.5 shows that there exists a one-to-one correspondence
between the direct product £(X xY,Y;idy) xE(Y) and the group £(X x
Y,Y). In fact, if we define a map © : £(X x Y,Y;idy) x E(Y) —
E(XxY,Y) by O(e, B) = ®(a)-J(B) for (o, B) € E(X XY, Y;idy)xE(Y),
then the map © is bijective by basic properties of algebra. Furthermore,
if the groups £(X xY,Y;idy), £(Y) and £(X XY,Y) are abelian, the map
© is an isomorphism. But the commutativity of £(X xY,Y;idy) xE(Y)
implies that of £(X x Y,Y). Thus we have the following corollary.

COROLLARY 3.6. Let X and Y be CW-complexes such that £(X x
Y,Y;idy) and E(Y) are abelian groups. Then we have

(4) ©:E(X xY,Y;idy) B E(Y) = E(X x V,Y).
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We can use the formula (4) to calculate one of three groups in relation
to the others in the formula. From this point of view, we need to concrete
the groups in the formula. Here, we find a relation between the groups
E(X xY,Y;idy) and £(X). First, we have the following proposition in
general.

PRrROPOSITION 3.7. Let X and Y be CW-complexes. Then £(X) is
isomorphic to a subgroup of £(X x Y,Y;idy).

Proof. 1t is sufficient to show that there is a monomorphism from
E(X) to E(X x Y,Y;idy). Define I : £(X) — €(X x Y,Y;idy) by
I(f] = [idy, f x idy].

First, we show that I is well-defined. It is easy to show (idy, f xidy) :
i3 — 42 is a morphism in the category of pair, where iz : Y — X x Y is
the inclusion given by is(y) = (*,y) foreach y € Y. Let H : f ~ g rel
*. Then

H(z,0) = f(x), H(z,1) = g(z) and H(x,t) = *.
Define H: X xY xI — X xY by H(z,y,t) = (H(x,t),y). Then
Ho (ig x idr)(y,t) = H(x,y,t) = (H(x,1),y) = (x,y) = i2(y)

and

H(z,y,0) = (H(z,0),y) = (f(z),y) = (f x idy)(z,y),
H(z,y,1) = (H(z,1),y) = (9(z),y) = (g X idy)(=, 1),
TI_(*,*,t) = (H(*,t), %) = (*,%).

~ o~

Therefore, (idy, H) is a homotopy between (idy, f x idy) and (idy, g %
idy) in the category of pairs. Furthermore, (idy, f x idy) is a self
homotopy equivalence on i in the category of pairs if f is a self homotopy
equivalence on X. So I' is well defined. Moreover, I' is a homomorphism.
In fact,

I((f1-lg]) = Tlf og] = [idy,(f o g) x idy]
[idy, f X idy] . [idy,g X idy]
= Tf]-Tlgl

Finally, we show that I" is monic. Let I'[f] = ['[g] for [f], [g] € £(X).
By the definition of the T', this means

(’L'dy, f X idy) -l (’idy,g X idy)

i
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in the category of pair. So there exists a homotopy of pair (F,F) :
19 X td; — 12 such that

F: (f xidy) ~ (g x idy) rel (x,%)

and

F :idy ~idy,
where 42 : Y — X x Y is the inclusion and id; is the identity on [0, 1].
Define G : X x I — X by G(x,t) = p1F(x, x,t) for (z,t) € X x I, where
p1: X XY — X is the projection. Then

G(z,0) = p1(F(z,%,0)) = p1(f(2),%) = f(z),
G(z,1) = pl(ﬁ(x’ *,1)) = p1(g(x), *) = g(x),
G(*,t) = p1(F(x,%,t)) = p1(*, %) = *.
Thus [f] = [g] in £(X). O

Proposition 3.7 implies that the group £(X) gives always a lower
bound of the group £(X x Y,Y;idy). Now we are interested in the
monomorphism I" defined in the Proposition 3.7. Is the map I" an iso-
morphism under the conditions in Proposition 3.77 Otherwise, when
is it onto, i.e., an isomorphism? What are the conditions of X and Y
under which the homomorphism I is bijective?

In the next section, we will discuss about them and introduce one of
the sufficient conditions under which the map I is onto.

4. H-group structures and self pair homotopy equivalences

In this section, in order to study the condition that the groups £(X)
and £(X xY,Y;idy) are isomorphic, we will use a part of method which
was used earlier by Sieradski [10]. So we will introduce a part of Sier-
adski’s method which is necessary to develop this section until further
notice.

Throughout this section, spaces X and Y are connected CW-complex-
es which admit homotopy inversive, homotopy associative multiplication
mx: X xX - Xandmy :Y XY — Y and we will not distinguish
in our notation between a base point preserving map and its homotopy
class.

First, we note that each set [A4, B], with B a homotopy inversive,
homotopy associative H-space, of homotopy classes of base point pre-
serving maps receives a group structure whose operation will be denoted
additively and will be referred to as “addition”. Thus for any space S,
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the set [S, X x Y] is an additive group, since the product X x Y inherits
from X and Y a “coordinate-wise multiplication” which is homotopy
inversive and homotopy associative. Consider the wedge sum X VY and
the inclusion i : X VY — X x Y. Then we obtain from a mapping cone
sequence for the inclusion i a short exact sequence of additive groups
# #

(5) 0-[XAY,XxY] L X xY, X xY] 5 [XVY, X xY] -0,
where ¢ : X XY — X AY is the inclusion of X X Y onto base of the
mapping cone X AY of i. It proves convenient to identify [X VY, X x Y]
with the set of 2 x 2 matrices

hxx hxy

(hAB) - [ hyx hyy :]
with entries hap from the homotopy sets [A4, B] for 4, B = XY, via
the correspondence of i : X VY — X x Y with the matrix (ppohoiy),
where i4: A > X VY (A = X,Y) are the two inclusions of the sum-
mands into the sum and pg : X xY — B (B = X,Y) are the two projec-
tions of the product onto the factors. We observe that the composition of
homotopy classes determines an associative operation in [X X Y, X x Y]
which is written multiplicatively. This operation has a unit idx«y, is
generally noncommutative, and distributes over additive from one side:
(g+h)of =gof+hof. Thus the self-homotopy equivalence on X XY
is just an element in [X x Y, X x Y| which has an invertible element with
respect to the multiplication. The identification of the set [X VY, X x Y]
with the set of 2 x 2 matrices (h4p) with entries h4p from the sets [A, B]
(for A, B = X,Y) makes it possible to introduce a matrix multiplication
in [XVY,X xY]:

hxx hxy kxx kxy
hyx hyy kyx kyy
_ | kxxohxx +kyxohxy kxyohxx+kyyohxy
kxxohyx +kyxohyy kxyohyx +kyvyohyx |’
where the multiplication kxp o hax is the composition of the map hax
in [A, X] and the map kxp in [X, B] and the indicated addition kxp o
hax + kyp o hay takes place in [A, B]. The matrix multiplication need
not be associative, but does admit a unit

o 1]

where 0 is the homotopy class of the constant map * and 1 is the homo-
topy class of the identity map id4. So we can refer to invertible matrices
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(haB) : X VY — X x Y. The induced map
i# X xY,XxY] = [XVY,X xY]

is said to be a multiplicative homomorphism if it is a homomorphism
from the composition multiplication to the matrix multiplication. Here,
we quote two theorems in [10].

THEOREM 4.1([10], p.793). Leti# : [X xY, X xY] = [X VY, X x Y]
be a multiplicative homomorphism. Then h : X xY — X xY is a
homotopy equivalence if and only if hoi = (hap): X VY - X xY is
an invertible matrix.

THEOREM 4.2([10], p.796). The map i* : [X x Y, X x Y] = [X V
Y, X x Y] is a multiplicative homomorphism if and only if kernel i# is
a right ideal in [X x Y, X x Y.

Let us return to the investigation about £(X x Y, Y;idy). We know
that for each class h € [X x Y, X x Y], i#(h) can be identified with the

matrix

hxx hxy
hyx hyy

where hgp = ppohoioig for the inclusionig : A - XVY (4,B = X,Y).

PROPOSITION 4.3. Let [idy,h] be an element of £(X x Y,Y;idy)
and [X,Y] = 0. Then for some hxx € £(X), i*(h) can be identified

with the matrix
hxx O
0 1

provided that i# is a multiplicative homomorphism.

Proof. If h is the class in [X x Y, X x Y] such that (idy,h) :ioiy —
ioily is a morphism in the category of pairs, then i#(h) can be identified
with

[ hxx hxy ]
0 1 '

In fact, hyx = pxohoioiy =pxyoiy =% and hyy =pyohoioiy =
px oty = idy. Moreover, if [X,Y] = 0, i#(h) can be identified with

hxx O
0o 1

since hxy € [X,Y]..
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Let [idy,h] € E(X X Y,Y;idy). Then (idy,h) :ioiy — ioty is a
morphism and h is an element of £(X x Y). Thus by Theorem 4.1, the

matrix ¥ (h)
hxx O
0 1

is an invertible matrix. That is, there exists a 2 x 2 matrix

kxx kxy]
kvx kyy

such that

_ 1 0| | kxx kxy hxx O
o 0 1| | kyx kyy 0 1|

kxxohxx =1=hxxokxx,kxy =0,kyx =0 and kyy = 1.
That is, [hXX o kxx] = [’idx] = [kXX o) hxx]. Thus hxx € E(X) O

The sequence (5) can be extended to the pointed sets of pair homo-
topy classes. That is, we have the following exact sequence:

So we have

(6) (X AY,CY),(X xY,Y)] & (X x V,Y),(X x Y,Y)]
P X VYY), (X x VY],

where CY is the reduced cone of Y. Actually, the pointed sets are
groups, since the H-group structure on X x Y is induced by the H-
group structures on X and Y coordinate-wisely. i# is said to be a
multiplicative monomorphism pair-wisely if it is a monomorphism as a
map in the sequences (5) and (6) simultaneously.

In Proposition 3.7, we showed that there is a monomorphism I' :
E(X) — &(X xY,Y;idy) given by I'[f] = [f X idy,idy]. Now we
show that the monomorphism I' is also onto and so an isomorphism if
i# [X xY,X xY] = [X VY, X x Y] is a multiplicative monomorphism
pair-wisely and [X,Y] = 0.

THEOREM 4.4 Let i : X VY — X XY be the inclusion such that
the induced homomorphism i# : [X x Y, X xY] - [X VY, X x Y] is
a multiplicative monomorphism pair-wisely. Then the mapT': £(X) —
E(X xY,Y;idy) given by T[f] = [idy, f X idy]| is onto provided that
[X,Y]=0.
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Proof. Let [idy, h] be an element of £(X xY,Y;idy). By Proposition
4.3, there is an element [hxx] € £(X) such that
' h 0
#oy _ | hxx
i7" (h) = [ o1 ] .

Moreover,

hXX X idy)

Px © hXXx’Ldy)OZO'LX pyO(hXXx’Ldy)OZOZX
Px © hXXdey)OZOZy pyo(hxxxzdy)ozon/

Kol

Thus i#(h) = i# (hxx xidy) in [(XVY,Y), (X xY,Y)), since [X,Y] = 0.
So by the hypothesis, we have [idy,h] = [idy,hxx X idy] in E(X x
Y,Y;idy). Therefore, we conclude that for each [idy,h] € £(X x
Y,Y;idy), there exists an element [hxx| € £(X) such that
F[hxx] = [idy,hXX X idy] = ['idy,h].
O
COROLLARY 4.5. The group £(X xY,Y;idy) is isomorphic to £(X)
provided that [ X ANY,X xY] =0 and [X,Y]=0.
Proof. The fact [XAY, X xY| = 0 implies (X AY,CY), (X xY,Y)] =
0, since the reduced cone CY is contractible. Thus the result follows

from Theorems 4.2 and 4.4 and the mapping cone sequences (5) and (6)
of the inclusion i : (X VYY) - (X xY,Y). d

'THEOREM 4.6. Let X and Y be CW homotopy associative and in-
versive H-spaces such that the two sets [X AY, X x Y] and [X,Y] are
trivial. Then there exists a split short exact sequence

1-8(X)-EX xY)Y)—-E(Y)—

Especially, we have E(X x YY) 2 E(X)D EY) if E(X) and E(Y) are
abelian groups.

Proof. 1t follows from Corollaries 3.6 and 4.5. O

For integers n > m > 1 and abelian groups G and H, consider the
Eilenberg-Maclane spaces K(G,n) and K(H, m). Then we have

[K(G,n) A K(H,m),K(G,n) x K(H,m)] = 0.

Moreover,
[K(G,n),K(H,m)] = H™(G,n; H) =0
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and

[S1, K(G,n)] = m(K(G,n)) = 0.
So by Theorem 4.6, Corollary 9 in [10, p796] and the fact that £(K (G, n))
is the group Aut(G) of automorphisms on G, we have

COROLLARY 4.7. For two cyclic groups H and G, let K(G,n) and
K(H,m) be Eilenberg-Maclane spaces with n > m > 1. Then we have

E(K(G,n) x K(H,m), K(H,m)) = Aut(G) ® Aut(H),

where Aut(G) is the group of automorphisms on G.
Moreover,

E(S' x K(G,n), K(G,n)) = E(K(G,n) x 81,8
=~ £(K(G,n) x 8Y) = Zy ® Aut(G).

EXAMPLE 4.8. Let CP* and RP® be infinite complex projective
space and infinite real projective space respectively. Then we have

E(CP* x RP*®, RP*®) = Auto(Z) ® Auto(Z;) = Z,
and
E(CP™ x S, 81 = £(8* x OP®,CP®) = £(S* x CP®) = Zy & Zy.
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