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JORDAN AUTOMORPHIC GENERATORS
OF EUCLIDEAN JORDAN ALGEBRAS

JungHwWA KIM AND YONGDO LIM

ABSTRACT. In this paper we show that the Koecher’s Jordan au-
tomorphic generators of one variable on an irreducible symmetric
cone are enough to determine the elements of scalar multiple of the
Jordan identity on the attached simple Euclidean Jordan algebra.
Its various geometric, Jordan and Lie theoretic interpretations asso-
ciated to the Cartan-Hadamard metric and Cartan decomposition
of the linear automorphisms group of a symmetric cone are given
with validity on infinite-dimensional spin factors

1. Introduction

Let V be a simple Euclidean Jordan algebra with an identity e and let
Q2 be the associated symmetric cone, the cone of invertible squares. In
[11], Koecher introduced a remarkable family of Jordan automorphisms

V(a,b) := P(P(a'/*)b71)/2P(a™/%) P(b/?),

where P stands for the quadratic representation of V" and a, b vary over
the symmetric cone Q (more generally in a neighborhood of the Jor-
dan identity e in any semisimple Jordan algebra) and proved that these
Jordan automorphisms, called Koecher’s Jordan automorphic genera-
tors, generate the connected component K of the identity in the Jor-
dan automorphism group Aut(V'). In the simple Euclidean Jordan alge-
bra Sym(n,R) of n X n symmetric matrices, the Jordan automorphism
V(a,b) with a,b € Q can be realized as the special orthogonal transfor-
mation
(A—1/2BA—1/2)—1/2A—1/2B1/2 e SO(n)
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with positive definite A, B and hence the Lie group SO(n) is generated
by

{(NNT)=12N . N e N},
where N := {AB: A, B are positive definite}. This result was rediscov-
ered by R. Hauser [6] independently.

Koecher’s Jordan automorphic generators that are closely related
to the Cartan decomposition of the linear automorphism group G =
P(Q)- K and to a Cartan-Hadamard metric on the symmetric cone (gen-
erally this kind of generators appears in a semisimple Lie group with a
Cartan-decomposition realizing a symmetric space of non-positive cur-
vature, see Remark 4.3), has recently played a key role in semidefinite
and symmetric programming. The transitivity of K on Jordan frames
of V implies that the elements fixed by K (or by a generating set of
K) are exactly R - e, the scalar multiples of the Jordan identity e of V.
Using Koecher’s Jordan automorphic generators, an element a € V is a
scalar multiple of the Jordan identity e if V(z, y)(a) = a for all z,y € .
This result has played a crucial role for classifying self-scaled barriers for
semidefinite and symmetric programming (the Hessian of a self-scaled
barrier is a positive scalar multiple of that of the standard logarithmic
barrier F'(x) = — log det(x), see [6], [7], and [8]).

One of main interest of this paper is to find optimal Jordan automor-
phic generators determining elements of scalar multiple of the Jordan
identity. The following main result of this paper shows particularly
that the Koecher’s Jordan automorphic generators of ‘one variable’ are
enough to determine the elements of scalar multiple of the identity. A
compact version of this main result appears in Theorem 5.1 related to
involutive elements, hyperbolic spaces and the Cartan-Hadamard metric
on (.

THEOREM 1.1. Let a be an element of Q such that V(a,z)(a) = a
for all x € ). Then a = Ae for some positive real number A.

We also have the following theorem which plays a key role for the
proof of Theorem 1.1 together with the decomposition theorem (Theo-
rem 3.3) of symmetric cones.

THEOREM 1.2. Let = be an element of V. If [L(x), L(c(z))] = 0 for
any involutive Jordan automorphism of the form o = P(w), then z = Xe
for some real number \, where L(z) denotes the Jordan multiplication
operator.

In the last section we revisit the class of Euclidean Jordan algebras
of rank 2 and show how the main results are reflected to Lorentz cones
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in a direct way. We pay particular attention to infinite-dimensional
spin factors due to the recent development of polynomial-time primal-
dual algorithm for infinite-dimensional second-order cone programs [4].
Using the classification of J B-algebras (Jordan Banach algebras) of finite
rank [10] and explicit calculation of scaling points (geometric means) by
Faybusovich and Tsuchiya (Corollary 4.1, [4]) we conclude that Theorem
1.1 and Theorem 1.2 remain valid for this class of infinite-dimensional
Jordan Banach algebras.

2. Simultaneous diagonalization

We recall certain basic notions and well-known facts concerning Jor-
dan algebras from the book [2] by J. Faraut and A. Kordnyi. A Jordan
algebra V over the field R or C is a commutative algebra satisfying
z%(zy) = z(2?y) for all 2,y € V. Denote L(z) by the multiplication
operator L(z)y = zy, and set P(x) = 2L(x)? — L(2?) for x € V. An
element x € V is said to be invertible if there exists an element y in
the subalgebra generated by z and e such that zy = e. It is known
that an element x in V is invertible if and only if P(z) is invertible. In
this case, P(z)~! = P(z7!). If  and y are invertible, then P(z)y is
invertible and (P(z)y)~! = P(z~1)y~!. Furthermore, the fundamental
formula P(P(x)y) = P(z)P(y)P(z) holds true for any elements x and
Y.

A finite-dimensional real Jordan algebra V is called a Euclidean Jor-
dan algebra if it carries an associative inner product (-|-) on V, namely
(xy|lz) = (y|zz) for all z,y,2 € V. The spectral theorem (Theorem
II1.1.2 of [2]) of a Euclidean Jordan algebra V states that for z € V
there exist a Jordan frame (a complete system of orthogonal prim-
itive idempotents) c¢y,...,¢, (r is the rank of V) and real numbers
AL, .-+, Ar (eigenvalues of ) such that z = 377, Ajc;. We note that
P(k(z)) = kP(z)k™! = kP(z)k® for any Jordan automorphism k of V,
where k' denotes the adjoint of k with respect to the inner product (-, -)
on the Euclidean Jordan algebra V. The trace inner product tr(zy) is
associative and in this case every Jordan automorphism is an orthogonal
transformation with respect to the trace inner product. Let Q be the
open convex cone of invertible squares of V. Then  is a symmetric cone,
that is, the group G(Q2) := {g € GL(V) : g(2) = Q} acts transitively on
it and Q is a self-dual cone with respect to the associative inner prod-
uct. For an element g € G(R), ¢ is a Jordan automorphism if and only
if g(e) = e (Proposition VIIL.2.4, [2]).
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Throughout this paper we will always assume that V is a simple Eu-
clidean Jordan algebra equipped with the trace inner product and ¢ :=
{c1,...,¢r} is a fized Jordan frame. For any idempotent c of V' we de-
note the corresponding eigenspaces by V(c,\) := {z € V : cx = Az}
and the Peirce decomposition V = V(c,0) & V(c,1/2) ® V(c,1). If we
set Vii = V(¢;,1),Vij = Ve, 1/2) NV (c5,1/2) for 1 < i # j < r, then
V = ;<; Vij- The following multiplication property will be useful (see
Theorem IV.2.1, [2])

VijVii C Vi + Vyj,
(21) V=EPV; and {ViVj C Vi if § # k,
i<y ViiViu = {0} if {7,7}n{k,1} =0.

We note that Vi; = Re;, Vi; # {0} and dimVj; = dimV}; for any ¢ < j and
k < 1. Let d denote this dimension. Then r + gr(r — 1) = n := dim(V)).
We further note that

1
(2.2) Licg)z = 5(61-19 + k), x € Vyj.

Corresponding to the Peirce decomposition, for x € V there exist
unique real numbers d;(z) and z;; € Vi; = V(¢;,1/2)NV(c;,1/2) (@ < j)
such that

,
T = Zdi(:n)ci + Zm”
i=1

i<j

An element z of V is said to be diagonal (with respect to the Jordan
frame c) if z € 3, R ¢;. Two elements  and y are said to be simul-
taneously diagonalizable if there is a Jordan automorphism & € Aut(V)
~ such that both k(z) and k(y) are diagonal elements. We note that this
notion is independent of the choice of Jordan frames because of the tran-
sitivity of the group Aut(V') on Jordan frames of V (see Theorem IV.2.5,

[2])-

PROPOSITION 2.1. Let x € V. Then tr(z) = di(z). If z is a

=1

diagonal element then tr(zy) = >_;_, di(z)d;(y) for ally € V.

Proof. Let z = }_I_; di(x)c;+ ;. ; %ij- By (2.2), L(z) has the eigen-
value 3(d;(z) + dj(z)) on V;;. Since d = dim(Vj;) for any i < j, we
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have
o~y di(z) + dj(z)
z)) = ;dz(m)+d;——2—]—
- S+ Se- )i

i=1
= gZdl(m’), (n=r+ gr(r —1)).
i=1

It then follows from Proposition III.4.2 of [2] that tr(x)

S, di(z). Suppose that x is diagonal and let y = > i, di(y)e; +
Ez<] Yij- Then by (2.1) and (2.2), zy = Zz 1di(z)di(y)ei + Zi<j Zij
for some 2;; € Vj; and hence tr(zy) = >77_; ds(x)d;(y). O

Let Der(V) be the Lie algebra of the Jordan automorphism group
Aut(V). Then Der(V) consists of all Jordan derivations of V' (see page
36, [2]). Since V is simple, all derivations are inner ([2], Proposition
VI1.1.2) and hence each derivation D is a sum of derivations of the form
[L(a), L(%)] = L(a)L() — L{5)L(a).

The following Jordan-Lie algebraic interpretations of simultaneous
diagonalization will be useful for our purposes.

THEOREM 2.2. Let x and y be elements of V and let a = exp(z),b =
exp(y). Then the following are equivalent:

(1

) z and y are simultaneously diagonalizable,
) y L Der(V).x,

) [L(=z), L(y)] = 0,
)
)

a and b are simultaneously diagonalizable,

[P(a), P(b)] =0,
) (Fuglede — Putnam) P(a)b? = P(b)a?.

In particular, if =Y ;_; A\ic; is a diagonal element. Then

(Der(V).x ZRQ b > v

1<j, A=Ay

(2
3
(4
(5
6

Proof. The equivalences of (1)-(3) are established in [20]. Observe
that L(z) and L(y) are symmetric with respect to the trace metric
and P(a) = exp2L(z), P(b) = exp2L(y) by Proposition I1.3.4 of [2].
Then the equivalences of (3)—(5) follow from injectivity of the exponen-
tial mappings on V and on symmetric transformations. Suppose that
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P(a)b? = P(b)a®. Then A := P(a), B := P(b) are positive definite trans-
formations on V satisfying AB2A = BA?B (the fundamental formula).
Setting R = AB so that RRT = AB?A = BA?’B = RTR. By apply-
ing the Fuglede-Putnam theorem (Theorem 12.16, [22]), we have that
R is a symmetric transformation and therefore P(a)P(b) = P(b)P(a).
The commutativity of P(a) and P(b), P(a)P(b) = P(b)P(a), is obeyed
by the single element e, the Jordan identity: P(a)P(b)e = P(a)b?® =
P(b)a? = P(b)P(a)e.

Next, suppose that # = >_._; A\ic; is a diagonal element. Let y €
(Der(V).z)* and let y = 37, di(y)c;i + ,; ¥ij be the Peirce decom-
position of y. Suppose that A; # \;. Setting D = [L(c;), L(ys5)] so that

A= A

0= (D(2),y) = =—— (wis, v)-

From (2.1), one may see that y;;y;; is the only diagonal factor of y;;y.
Therefore by Proposition 2.1, 0 = tr(y;;y) = tr(yfj) and hence y;; = 0.

Conversely, suppose that y;; = 0 for A; # A;. To prove that y €
(Der(V).x)+, it is enough to show that [L(x), L(y)] = 0 by Theorem
2.2. Since [L(c;), L(c;j)) = 0 for all 1 < 4,5 < r, it suffices to show that
[L(z), L(y:;)]) = 0 for any @ < j satisfying A; = );. Suppose that \; = ;.
Let us consider an equivalence relation on {1,2,...,7} defined by [ ~ k
if and only if A; = Ak, and let {P1,Ps,...,P;} be the corresponding
partition of {1,2,...,7}. Let ep, = ¢,. Then L(z) can be written
as

HEPk

l
L(z) = _axL(ep,),
k=1

where oy is the eigenvalue of x representing the class Py. From X; = )y,
we have either {i,j} C Py or {i,j} N Pr = 0 and thus ep,y;; = 0 or
ep,¥i; = Yi; for each 1 < k <. Applying Proposition IL.1.1(i) of [2], we
see that [L(ep, ), L(yi;)] = O for both cases. This shows that

l
[L(x)’L(yij)] = Zak[L(e’Pk)’L(yij)] =0

k=1

and completes the proof. a



Jordan automorphic generators 513
3. A decomposition theorem on symmetric cones

The symmetric cone Q carries a G(Q)-invariant Riemannian metric
defined by
vz (u,v) = (P(z™Hulv),z € Qu,v eV
for which the Jordan inversion z — z~! on Q is an involutive isometry
fixing e. The symmetric space 2 is then a Cartan-Hadamard manifold
and the unique geodesic passing two points a and b is given by

¥(t) = P(a'/?)(P(a™/?)b)".
The geometric mean a#b of elements a and b in §2 is defined by
a#tb = P(a/?)(P(a™/?)b)!/*

and it coincides with the geodesic middle y(1/2) of @ and b for the
Riemannian metric distance. In the Euclidean Jordan algebra Sym(n, R)
of n x n real symmetric matrices, the geometric mean of positive definite
matrices A and B is given by

A#B = A1/2(A_1/2BA_1/2)1/2A1/2.
ProposITION 3.1 ([15], [17], [18]). Let a and b be elements of §2.
Then
(1) the quadratic equation P(z)a
given by a#b,
(2) a#b = b#a (commutativity property),
(3) (a#b)~! = a~14b~! (inversion property),
(4) P(a#b) = P(a)#P(b)
= P(a/?) (P(a"V/2)P(b)P(a™"/2))"* P(aV2),
(5) g(a#b) = g(a)#g(b) for all g € G(Q) (transformation property).
For a,b € Q, the element F(a,b) := P(a“l#b)1/2a, which can be
viewed as a unique solution belonging to 2 of the equation
(@' #0)1/? = a7 #a,

is known as the spectral geometric mean of a and b.

= b has a unique solution in 2

PROPOSITION 3.2. Let a,b € ). Then
(1) F(a,b) = F(b,a) (commutativity property),
(2) F(a,b)~! = F(a~!,b!) (inversion property),
(3) P(F(a,b)) = F(P(a), P(b)),
(4) F(o(a),o(b)) = J(F(a b)) for any Jordan automorphism o of V,
(5) F(P(a)b, P(a™)b) =
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(6) F(a,b) = a#b if and only if a and b (hence log(a) and log(b)) are
simultaneously diagonalizable,

(7) (Spectral mean) A\i(F(a,b)) = M\(P(a¥/?)b)1/2 = \(P(b*/?)a)'/2?,
where \;(z) are the eigenvalues of x in non-decreasing order.

Proof. (1) By Proposition 3.1 (1), P(a"'#b)a = b and hence from
the commutativity and the inversion properties of geometric means

Fl(a,b) = P(a ' #b)Y2%a = P(a™ #b)~2b = P(b™ #4a)'/%b = F(b,a).
(2) It follows from the inversion property of the geometric mean that
F(a,b)™! = (P(a #b)Y/2a)~! = P(a#b~1 )20 = F(a™,b7Y).

(3) From the fundamental formula P(P(z)y) = P(z)P(y)P(z) and
Proposition 3.1 (4) we have that

P(F(a,b)) = P(P(a'#b)"/?a)
= P(a"'#b)Y/2P(a)P(a " #b)'/?
= (P(a)"#P(5))"/*P(a)(P(a) "' #P(b))"/?
= F(P(a), P(b)).
(4) It follows from o(z#y) = o(z)#0(y) and P(o(z)) = o P(z)o™?!
that
F(o(a),0(8)) = P(o(a) ' #0(b))"?a(a)
= P(o(a™'#b))'/?o(a)
= oP(a"'#b)%0710(a)
= o(F(a,b)).
(5) It follows that

1/2
F(P(a)b, P(a™1)b) = (P(P(a_l)b“l#P(a‘l)b)) P(a)b
1/2

=(P(P(a‘1)(b_1#b)) P(a)b
= P(a™')(P(a)b) = b.

(6) It turns out (Theorem 5.2 of [5]) that two positive definite matrices
A and B commute if and only if the geometric mean A# B coincides with
the spectral geometric mean F(A, B). Using this fact and Proposition
3.1, we have that for any elements ¢ and b in 2, a#b = F(a,b) if and
only if P(a#b) = P(F(a,b)) if and only if P(a)#P(b) = F(P(a), P(b))
if and only if P(a)P(b) = P(b)P(a) where we used the fact that the
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quadratic representation P is injective from the symmetric cone ) into
the cone of positive definite operators on V' [17]. By Theorem 2.2, this
is equivalent to that a and b are simultaneously diagonalizable.

(7) By Lemma XIV.1.2 of [2], there exists a Jordan automorphism
k such that F(a,b) = P((a='#b)/?)a = kP(a'/?)(a~1#b) and is equal
to k(e#P(a'/2)b) = k((P(a'/?)b)1/?) from the homogeneous property of
the geometric mean. O

Let o be an involutive Jordan automorphism of V. We define
O ={zreQ:0o(x) =1z},
O, ={zre€Q:0(z) =21}
THEOREM 3.3 (cf. [19]). The maps
T:QF xQ; - Q, T(a,b) = P(a/*b,
S:Q; xQf =, S(a,b) = Pa'/?),
are differentiable diffeomorphisms with their inverses
T™(z) = (z#o(x), F(z,0(z7))),
S (z) = (a#o(a7h), Fz,0(2))),
respectively.

Proof. Let z € Q). By the commutativity, inversion and transforma-
tion properties of the geometric mean (Proposition 3.1),

o(z#0(z)) = o(z)#0%(z) = o(z)#z = s#ao(z),
o(z#o(z™h)) = o(z)#a’(z7) = o(z)#a ™" = (a#a(z™)) ™,

which implies that z#0(z) € QF and z#0(xz!) € Q. By Proposition
3.2, we have

F(z,0(e™)™ = F(z™%,0(z)) = F(o(z),0%(z™)) = o(F(z,0(z))),
which shows that F(z,o(z~!)) € Q. Similarly,
o(F(z,0(2))) = F(o(z),0%(z)) = F(z,0(x))

implies that F'(z,o(x)) € QF. Therefore, the maps T-! and S~! are
well-defined. To see that S~ is the inverse function of S (the case T is
similar), let (a,b) € Q7 x QF. Using o(P(z)y) = P(o(z))o(y) and by



516 Junghwa Kim and Yongdo Lim
Propositions 3.1-3.2, one can show directly that

S71(S(a,b)) = S} (P(a'/?)b)
= (P(a'*)b#o(P(a™"/*)b™"), F(P(a/?)b, 0(P(a"/?)b)))
= (P(a?)b#P(a*?)b, F(P(a'/?)b, P(a™1/?)b)
= (P(a'/?)(b#b7"),b)
= (a,b).

Similarly S 0§71 = idg. O

REMARK 3.4. We note that a typical involutive Jordan automor-
phisms arises in the form ¢ = P(w) with w? = e (eigenvalues of w are
+1) by Proposition 11.4.4 of [2] and every element w such that w? = e
arises from an idempotent for since ¢ := %(w + e) is an idempotent.

If we denote
Vi={zeV:o@)=z},V, ={zeV:0o(z)= -z},

then V' is a Jordan subalgebra of V and V, is the orthogonal com-
plement of V5 with respect to the trace inner product. Furthermore,
OF =exp(V,h) = QN V;t and Q = exp(V,") are symmetric (geodesic)
submanifolds of €2 and then Theorem 3.3 can be viewed as the global
tubular neighborhood theorem for the geodesic submanifolds QF in the
Cartan-Hadamard manifold Q (cf. [14]). This decomposition theorem
is studied for more general cases, involutive dyadic symmetric sets or
uniquely 2-divisible Bruck loop ([16]). The geodesic submanifold (7} is
the corresponding symmetric cone of the Euclidean Jordan algebra V,t
and is known as a Helwig space [1].

Though Fiedler and Pték [5] have introduced and developed the spec-
tral geometric mean of positive definite matrices as an another mean op-
eration on the positive definite cone comparing that of geometric mean of
positive definite matrices, the notions of geometric and spectral geomet-
ric means on the symmetric cones turn out very useful for understanding
decompositions of symmetric cones with respect to the geodesic subman-
ifolds fo Metric and spectral geometric means are used to a primal-
dual potential-reduction algorithm of symmetric programming (Lemma
3.2 and Proposition 3.3, [3]). Proposition 3.2 (5) will play a certain role
for establishing our main results.
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4. Koecher’s Jordan automorphic generators

Let A and B be n X n positive definite real matrices. Then
A1/2BA1/2 — (A1/2B1/2)(BI/ZABI/2)(A1/2B1/2)——-1

and thus AY/2BA/?2 is similar to BY/2AB1/2,

Setting C := (AY/2BAY/2)~1/2A12B1/2 we have CT = C~1, det(C)
= 1 and hence C is a special orthogonal transformation. Furthermore,
AY2BAY? = C(BY/2ABY/?)C~1 and so AY2BA/? is orthogonally simi-
lar to B/2ABY/2. The Jordan-algebraic version of this result is appeared
in Lemma XIV. 1.2 of [2] using the polar decomposition of G(£2), (The-
orem II1.3.1 of [2]): For a,b € , there exists k& € K, the identity
component of the Jordan automorphism group Aut(V') of V, such that
P(a'/?)b = kP(b'/?)a.

For a,b € €1, we denote

V(a,b) := P(P(aY?)b)"Y2P(a"Y/?)P(b*/?).
Then V(a,b) is a Jordan automorphism since
V(a,b)(e) = P(P(a™/2)b)"/2(P(a™"/%)b) = ¢

and belongs to K by continuity. The Jordan automorphism V (a1, b)
can be regarded as the orthogonal factor (on the other hand P(P(a'/?)
b)1/2 is the symmetric factor) of P(al/2)P(b1/2) in the Cartan decom-
position G(Q), = P(R) - K :

(4.3) P(a*?)P(p'/?) = P(P(a/?)b)/? . V(a™1,b) € P(Q) - K.
We seek some basic properties on the Jordan automorphisms V' (a, b).

PROPOSITION 4.1. Let a,b € §2.

(1) V(a~1,b) is a unique element of k € Aut(V) such that P(a/?)
P(b'/2) = EP(P(b"/%)a)'/2. In particular, P(a}/?)b = V(a~1,b)
(P(b/2)a).

(2) V(a,b) = P(a'/?)P(a#b) "1 P(b'/?).

(3) V(a,b) =V(a 1,071 =V (b,a)"t = V(ba)t.

(4) V(a,b) = idy if and only if a and b are simultaneously diagonaliz-
able.

(5) V(k(a), k(b)) = kV(a,b)k™! for any k € Aut(V).

(6) V(P(z?)a, P(z/?)b) = V(z~1,a)V (a,b)V (b,z1) for any z € Q.
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Proof. (1) Since V(a,b)™! = V(a,b)?, we find that

V(a,b) ' P(a”/2)P(b'/?)

(") P(a=")P(P(a="2)8) 2 P(a™/2) P(b?)
(b1/2)( (a —1/2)P(P( 1/2)6‘1)1/2P(a"1/2))P(b1/2)
(/2 P(a b~ )P(B1/2) = P(b/%)P(b~ a1 P(b"/?)
(B/2) (PO P(PGH2)a™)2P(67/2)) P

(

P(b1/2) —1)1/2

=P
=P
=P
P
=P

(2) It follows from the inversion property of the geometric mean that
Via P(P( —1/2 ) 1/2P(a_1/2)P(b1/2)

P(a1/2)( (a ‘1/2)P(P(a1/2)b‘1)1/2P(a_1/2)> P(b1/2)

P(a?)P(a”#b7") P(6'/?)

P(a?)P(a#b)~1P(b'/?).

(3) Since (the Riccati solution) (P(a)#P(b)) P(b)‘l(P(a)#P(b)) -
P(a), we find

P)(P@#P®)) " = (P@#P(t))PO)™
and thus
V(a,b) = P(a'/?)P(a#b)"*P(b}/?)
= P(a~Y?)P(a#b)P(b1/?)
— P(a‘l/z)P(a"l#b_l)_lP(b_l/Q)
=V(at v ).

Furthermore, from the commutativity property of the geometric mean
we have

V(a,b)™ = V(a,b)" = P(b*/*)P(a#tb) " P(a'/?)
= P(b'/2)P(b#a) " P(a'/?)
=V(b,a).
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(4) If V(a,b) = idg, then P(a~'/2)b = P(b'/2)a~'. By Theorem
2.2, a~/2 and b2 (and hence a and b) are simultaneously diagonal-
izable. Conversely, suppose that a and b are simultaneously diago-
nalizable. Then P(a) and P(b) commute by Theorem 2.2 and hence
P(a#b) = P(a)#P(b) = P(a)'/?P(b)'/2. Therefore,

V(a,b) = P(a*?)P(a#b)~ P(b'/?) = idy.
(5) If k € Aut(V), then P(k(z)) = kP(z)k~! and hence
V(k(a), k(b)) = P(k(a'/?)) P(k(a#b)) ™ P(k(6'/%))
= kP(a*?)k " kP(a#b) kb P(b1/?) k1
= kV(a,b)k™L.

(6) Using the fundamental formula P(P(z)y) = P(z)P(y)P(z) and
Proposition 3.1, we have

V(P(x)a, P(x)b)
= P(P(a)a >1/2( (P(z)asP(a)b) ") P(P(a)b)?
= [P(z)P(z) ' P(P(z)a)"/?| o [P(z) " P(a#b) ' P(z~")]
o [P(P(z)b)"/*P(z™")P(x)]
= [P(z)P(z*#a™1) " P(a™/?)] o [P(a'/?) P(astb) " P(b"/?)]
o [P(b™1/?)P(z*#b™") ' P(a)]
=V(z?a YV (a,b)V (b7, 2?)
= V(z7%a)V(a,b)V (b, z72). O

Next, we state Koecher’s result on the family of Jordan automor-
phisms V(a,b). First of all, it is not difficult to see from the Lie al-
gebra of K is by £(K) = [L(V),L(V)] (Theorem IIL.5.1 and Proposi-
tion VI.1.2 of [2]) that group G(Q), = P(Q) - K is generated by P(Q)
([13], p.27). Let k € K. Then k = P(ap)P(an-1)--- P(a1) for some
a; € Q. By the explicit polar decomposition (4.3) and by induction,
k = P(an)P(an—1)--- P(a1) = P(w)h where h is a product of elements
of the form V(a,b),a,b € Q. From the uniqueness of the decomposition,
we have k = h. We have proved the following (see Theorem IV.9 of [11]
for general case).

THEOREM 4.2. The group K is generated by {V(a,b) : a,b € Q}.
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REMARK 4.3. By Proposition 4.1 (2) and (5), the set {V(a,b) : a,b €
1} of Koecher’s Jordan automorphic generators is invariant under in-
version and adjoint action of K. We further note that the notion V (a,b)
arises naturally in a connected semisimple Lie group with a Cartan de-
composition G = P - K where the uniqueness of the square root of
an element of P is guaranteed (see [12], more generally, Banach-Lie
groups associated to infinite-dimensional symmetric Finsler manifolds
with seminegative curvature, Theorem V.5 of [21]). In this case, using
the corresponding Cartan involution one may see that for any a,b € P,

V(a_l,b) — (a1/2ba1/2)—1/2a1/2b1/2

belongs to K, the (orthogonal) K-factor of the hyperbolic element al/2

b1/2. On the other hand, (a!/2ba'/2)1/2 is the (symmetric) P-factor of
a1/2b1/2_

5. Proofs of main theorems

Proof of Theorem 1.2. Suppose that ¢ € V such that [L(z), L(o(z))]
=0 for any Jordan involution ¢ = P(w),w? = e. Let k € aut(V). Then
from L(k(z)) = kL(z)k~! and kP(w)k~! = P(k(w)), 0 = [L(k(z)), L(P
(k(w))k(z))]. Since k(w)? = k(w?) = k(e) = e for all w? = e, choosing
k € Aut(V) such that k(z) is diagonal, we may assume that z is a
diagonal element of V. Let z = Y ;_; Aic;. If A\; = A; for all 4,5 then
x = Are. Suppose that A; # A; for some ¢ # j. We may assume that
i =1 and j = 2. To lead a contradiction, it is enough to construct an
element w of order 2 such that P(w)(z) contains a non-zero Vjo-factor
by Theorem 2.2.

Note that ¢; and ¢y are orthogonal primitive idempotents of V and
hence of the subalgebra V'(c1 4¢3z, 1) which is simple by Lemma 1.2 of [9].
We further note that the simple Jordan algebra V(c; + co,1) is rank 2
and hence is isomorphic to a spin factor R x W for some Euclidean space
(W, (:])) with dim(W) > 2. The corresponding Jordan frame of {c;,c2}
in R x W can be written as c; = (1,u), ¢z = (1, —u) for some u € W
such that (u|u) = 1. Pick v € W such that (v|v) = 1 and (u|v) = 0. Then
¢y == 3(1,v),¢, :== 3(1,—v) form a Jordan frame of R x W, and hence
there exists an element wyg € R x W such that w@ = ¢} + ¢, = (1,0),
the identity for R x W and P{wg)(c1) = ¢} (see Corollary IV.2.4, [2]).
We note that P(wg) is an involutive Jordan automorphism (Proposition
I1.4.4 of [2]) of R x W and P(wp)(c2) = . Then one can compute
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directly that
P(wo)(Aic1 + Aac2) = ArP(wo)(c1) + A2 P(wo)(c2)
= )\10,1 + )\26’2
A A
=S Lo+ 5L

2
= % )4 A 22 )
2 2

and can immediately see that in the Jordan algebra R x W, the Peirce
factor Vo from the Jordan frame {c1,c2} is Viz = {(0,y) e R x W :
(u|y) = 0}. Therefore z := Al;—’\2(0, v) is a non-zero Via-vector of R x W.
We keep the same notation of the constructed two elements wy and z in
the Jordan subalgebra V(c1 + cg,1).

Set w = wp +c3+ -+ + ¢ (in the case r = 2, we just proved in the
previous step). Since wg € V(c1 + ¢2,1) C V(ck,0) for all k # 1,2, we
find that

w=witest ot =ctotetote=e

and hence ¢ := P(w) is an involutive Jordan automorphism of V. Now

o(x) = P(w)(A1e1 + Agce) + P(w)(Asez + - -+ + Aey)

= ()\1 + )‘2(01 +c2) + Z) + Z&Ci
=3

2
= (Al ;—)\2(614-62)-{-;/\1'61) +z

has the non-zero Vy-factor z = &—E—AZ-(O, v), where in the second equality

we have used the fact that woci, woez € V(e1 +¢2,1) C V(eg, 0) for k #
1,2. This gives us a contradiction and completes the proof of Theorem
1.2. O

Next, we will prove Theorem 1.1. For a € (), we consider
M(a) := {a#P(w)a : w? = €}.
Then

(i) M(a) is a compact subset of 2 containing a,
(i) M(a™!) = M(a)™},
(iii) M(a) = {a} if and only if a = Xe for some A > 0,
(iv) k.M (a) = M(k(a)) for all k € Aut(V),
(v) P(a™1/2).M(a) = {(P(a™"/%) P(w)P(a¥/?)e)/2 : w? = e},
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(vi) det(z) = det(a) for all z € M(a), and
(vii) M(Aa) = AM(a) for all A > 0.
Now, it is immediate from Proposition 4.1 (2) and (3) that V(a, z)(a)
= a if and only if P(2'/?)a = P(a#z)P(a~'/?)a. Using P(a~V?)a = e,
this is equivalent to P(z'/2)a = P(a#z)e = (a#z)? or (P(z'/?)a)/? =
a#x. Therefore, Theorem 1.1 follows from the following:

THEOREM 5.1. Let a be an element of the symmetric cone 2. If
a#z = (P(z1/?)a)/?
for all z € M(a) then a = Ae for some positive real number .

Proof. By Theorem 1.2, it is enough to show that

[L(log a), L(log o(a))] = 0
for any involutive Jordan automorphism of the form ¢ = P(w), w? = e.

Let 0 = P(w) be an involutive Jordan automorphism and let

a = P(z'?)y,
the factorization of a from Theorem 3.3, where z = a#o(a) and y =
F(a,o(a™')). Then by Proposition 3.1

P(a'/?)y"/? = P(a'/?)(y#te)

= (P 2))#(P(z'?)e)

= (P(z'?)y)#e

= afx.
Since z = a#to(a) belongs to M(a), P(zY/?)y'/? = a#tz = (P(z'/?)a)'/?
from the hypothesis. Therefore, y*/2 = P(z~1/2)(P(z'/?)a)'/? = 2 '4a,
equivalently

P(y"*)z =a
by Proposition 3.1 (1). Now since y € 2, and z € 2, we have that

(y,2) = §7(a) = (a#to(a) ™", F(a,0(a)))

from the decomposition theorem for the geodesic submanifold €2 . There-
fore the geometric and spectral geometric means of a¢ and o(a) coincide

a#o(a) =z = F(a,o(a))

which occurs only when [L(loga), L(logo(a))] = 0 by Proposition 3.2
(5). This completes the proof. g
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For a € Q, let f, : @ — Q defined by f,(z) = P(z'/?)a. Then it is not
difficult to see that f, is a differential diffeomorphism with the inverse
function f71(z) = (a~'#2)? from Proposition 3.1. Thus Theorem 5.1
leads the following

COROLLARY 5.2. f;! = f, 1 if and only if a = Ae for some positive
real number of .

For a € Q, we let Q, := {z € Q: a#z = (P(z}/?)a)'/?}. Then Q,
has the following interesting properties:
(i) Qq = {z € Q: a#tzx = P(z/?)(a#2~1)} (by Proposition 3.1 (5)),
(it) {x € Q: a and z are simultaneousely diagonalizable} C Qg,
(iii) € is a closed cone of Q,
(iv) Qo = Q-1 = () 7H,
(v) k-Qq = Qyq) for any k € Aut(V), and
(vi) Qye = for any A > 0.
As an immediate consequence of Theorem 5.1, we have

COROLLARY 5.3. Let a € Q. Then Q, =  if and only if a = Xe for
some positive scalar \.

Let o and (3 be functions from € into itself. Let j : @ — Q,j(z) = 271
denote the Jordan inversion on 2.

COROLLARY 5.4. If x#y = a(z)#06(y) for all z,y € Q then a =
A-idq, 8 = j o a o j for some positive real number .

Proof. Suppose that z#y = a(z)#0(y) for all z,y € Q. Then by
Proposition 3.1, P(z#y)a(z)™! = B(y) and P(z#y)B(y)~! = a(z) for

all z,y € Q. Setting y = 7! and using e = z#z !, we get a(z)™! =

B(z~1) for all z € Q and hence § = joaoj. In particular, B(e) = a(e) ™'

Setting = = e we get B(y) = P(y*/?)a(e)~! and upon changing the roles
of z and y we have a(z) = P(z'/2)8(e)~!. Let a = B(e)~'. Then for any
x € 1§,

P(z#a)B(a)”!

(z#a)P(a”"?)ale)
(z#ta)P(a™"/)p(e) ™
(z#a)P(a”/?)a

(z#a)e

= (z#a)?.

P(z'/?)a = a(z)

Il

P
P
P
P
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By Theorem 5.1, we have that a = 3(e)™! = \e for some positive real
number \. Since a(z) = P(z'/?)B(e)~! = P(z'/?)(\e) = Az, we con-
clude that § = joaoj and a = A-idq. ™

6. Spin factors

In this section, we shall show that our main results Theorem 5.1
and Theorem 1.2 (and hence Corollaries 5.2-5.4) hold true for infinite-
dimensional spin factors.

Let V = RxY, where (Y, (-|-)) is a real Hilbert space with dim(Y") > 2
(even infinite dimensional). Then V' equipped with the product defined
by

(t,z)(s,y) = (ts +.(zly), ty + sx)
becomes a J B-algebra, Jordan Banach algebra, with the norm from the
inner product

(&, 2)|(s,y)) = 2(ts + (zy)).

Then e := (1,0) is the identity for V and the corresponding symmetric
cone of V is the Lorentz cone

Q= {(s,9):s>|lyll}.

See [23] for details on JB-algebras and corresponding infinite-dimensi-
onal symmetric cones.

For z = (s,y) € V, the multiplicative operator L(z) admits the block
partition

(6.4) L(z) = (l% ) f?}y)

where Iy denotes the identity operatoron Y and [, : Y — R is the linear
functional defined by I,(y¥') = (y|¥'), and the quadratic representation
of P(s,y) is given by

(6.5) P(s,y) =det(2)Iy +2 (iylgiT) ;@%) ,

where det(z) = s% — (y|y),y ® y(v') = (y|y')y for ¥’ € Y. It is shown by
Faybusovich and Tsuchiya [4] that for 21, 22 € 2, the quadratic equation

(6.6) P(2)z]! = 2

has a unique solution z3 € €). In our notation z3 = z;#22, the geometric
mean of z; and 2. Furthermore, they explicitly calculated the geometric
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mean z1#2p (Corollary 4.2, [4]): Let 21 = (s,y), 22 = (t, z), and let

a := \/det(z3) = /12 — (z|z), b := \/det(z1) = /52 — (yy).
Then

(6.7) z1 #22 =

—
V24/ab + st — (z]y)

First, we shall show that Theorem 1.2 remains valid for V. Let z =
(s,y) be an element of V such that [L(z), L(c(z))] = 0 for any Jordan
involution of the form ¢ = P(w), w? = e. It is easy to see that

{weV:w?=e}={(0,z) €V : (z|z) =1} U{e}.
Let w = (0, z) with (z|z) = 1. Then from (6.5) and (6.4), we find that

as + bt, bx + ay).

(6.8) P(w)z = (s, —y + 2(z|y)z)
and l
_ s —y+2(zly)z)
L(P(w)z) = ( . v+ ) .
Heyr2@yey Iy

Thus [L(z), L(P(w)z)] = 0 implies that

T _ T

by l—vt2tzin) = Loy raaly)e)ly
and therefore (—y + 2(z|y)zju)y = (y|lu)(—y + 2(z|y)z) for all u € V.
This is equivalent to

(zly)(z|w)y = (z|y)(ylu)z
for all u € Y. Because x varies on the unit sphere, this occurs only when
y = 0. Therefore z = (s,0) = s(1,0) e R - e.
Next, we describe the set M (2) = {z#P(w)z : w? = e}. Let z = (s,7)
be a fixed element of 2. From (6.8),

(6.9) {P(w)z:w’ = e} = {(s,2) : |lz]| = lyll}
and therefore
(6.10) M(2) = {(s,y)#(s,2) : ||=]| = [|yli}

which is a subset of the hyperboloid {u € Q : det(u) = det(z) = s? —
[ly||?}. On the other hand, observing from rank(V) = 2 that for a € Q,

1 1/2
= I 1/2 -
det(a) =1 if and only if a (det(e n a)> (e+a)
and from det(P(z~1/2)P(w)z) = 1 for w? = e that

2##P(w)z = (det(zdj—t Si?wz))“w + P(w)2)
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(the geometric mean of z and P(w)z is a scalar multiple of their sum
z + P(w)z), we have that

(6.11)  M(z) = {( - (zdjf(;zw)z))” 224 Pw)2) : w? = e}
6120 = () s )l = ot}
(6.13) _ {(2 + (z"1|T(z))>_1/ “(dy +T)(2): T e O(Y)} ,

where O(Y') denotes the orthogonal group on the Hilbert space Y and

:i“:((l) ;’,).

For instance, if z = (1,1/2,1/2) € R x R? then M(z) represents the
following simple closed curve on the hyperboloid {(z1,z2,z3) : 73 =
%-l—x%%—x%,ml > 0},

1+ cost+sint 14 cost— sint)
2 ’ 2
passing through (%,0,0) and z = (1,1/2,1/2).
Finally, suppose that (2#2;)? = P(z%/z)z for all 2y € M(z) or

[(s,0)#(2s,z + ) = P((2s,z + v)'/*)(s,9), V||| = ||yl

from (6.12). Suppose that y # 0. Then by multiplying 1/|]y||> we may
assume that ||ly|| = 1. From (6.7) and (6.5), choosing z as ||z|| = 1
and (z|y) = 0, the Y-coordinates of [(s,y)#(2s,z + y)]* and P((2s,z +

y)!/?)(s,y) are

(8 — (1 + cost)? + sin? t]) i (2,

1 s(a+2s)+1 (a+s)(a+2s)+1
—(2 2 b
a( sbz +2(a +b)sy), at2s a+2s Y

respectively, where a = /(25)2 — [z + y[|2 = Vd4s®— 2,6 = V/s2 - 1.
Since x and y are linearly independent, we find that a = 2s from

2sb _s(a+2s)+1 2(a+b)s (a+s)(at2s)+1

a at+2s a a-+2s

which gives a contradiction. Therefore, y = 0 and hence z = (s,0) =
5(1,0) = s - e. We conclude that Theorem 5.1 remains valid for infinite
dimensional spin factors.
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