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A CENTRAL LIMIT THEOREM FOR GENERAL
WEIGHTED SUMS OF LPQD RANDOM
VARIABLES AND ITS APPLICATION

Mi1-Hwa Ko, HyuN-CHuLL KiMm, AND TAE-SUNG KiM

ABSTRACT. In this paper we derive the central limit theorem for
Yo ani&i, where {ani,1 < i < n} is a triangular array of non-
negative numbers such that sup, }7 ; a2; < 00, maxi<i<n @ni —
0 as n — oo and {;s are a linearly positive quadrant dependent
sequence. We also apply this result to consider a central limit the-
orem for a partial sum of a generalized linear process of the form

Xn =372 _ o tk+i&;

1. Introduction and results

Lehmann [7] introduced a simple and natural definition of positive
dependence: A sequence {{;, 1 < % < n} of random variables is said
to be pairwise positive quadrant dependent (pairwise PQD) if for any
real aj, a5 and i # j P(&§ > ;& > ;) > P(& > a)P(& > o).
Much stronger concepts than PQD was considered by Esary, Proschan
and Walkup [4]: A sequence {{;, 1 <4 < n} of random variables is said
to be associated if for any real coordinatewise increasing functions f, g
on R™, Cov(f(&1,...,&n),9(61,---, &) 2 0.

Instead of association, Newman’s [9] central limit theorem requires
only that positive linear combinations of the random variables are PQD.
The definition of positive dependence introduced by Newman [9] is the
following: A sequence {{;, 1 < ¢ < n} of random variables is said to be
linearly positive quadrant dependent(LPQD) if for every pair of disjoint
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subsets A, B C {1,2,...,n} and positive r’s

(1.1) Zrifi and Z r;€; are PQD.
i€A jeB

Let us remark that LPQD is between pairwise PQD and association
and it is well known(see, for example, Newman [9, p.131] that association
implies LPQD and LPQD implies PQD.

Newman [9] established the central limit theorem for a strictly sta-
tionary LPQD process and Birkel [2] also obtained a functional central
limit theorem for LPQD processes. Kim and Baek [6] extended this re-
sult to a stationary linear process of the form Y; = Z;”;O a;&k—;, where
{a;} is a sequence of real numbers with 322 [a;| < co and {&} is a
strictly stationary LPQD process with E¢; = 0 and 0 < E£2 < oo.

In this paper we derive a central limit theorem for a linearly positive
quadrant dependent sequence in a double array, replacing the strictly
stationarity assumption with uniform integrability (see Theorem 1.1 be-
low). We apply this result to obtain a central limit theorem for a partial
sum of a linear process X, = Z;";_Oo ak+;&; generated by linearly pos-
itive quadrant dependent sequence {¢;} (see Theorem 1.2 below).

Newman [9] proved that the following central limit theorem for strictly
stationary LPQD sequence:

THEOREM A. [9] Let {&;,7 > 1} be a strictly stationary sequence of
LPQD random variables with E€¢; = 0 and E£2? < oo. If we assume that

0% = Cov(£,&) < oo,
i=1
then

n
(0211)_% Z{i —P N(0,1) as n — oc.
i=1

The next theorem extends Newman’s central limit theorem for a
strictly stationary LPQD sequence (Theorem A) from equal weights to
general weights, while at the same time weakening the assumption of
stationarity.

THEOREM 1.1. Let {ani, 1 < i < n} be a triangular array of non-
negative numbers such that

(1.2) supZa,%i < 00,
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and

(1.3) max an; — 0 as n — oo.
1<i<n

Let {&;} be a centered sequence of linearly positive quadrant depen-
dent random variables such that

(1.4) {ff} is an uniformly integrable family,
k(3
(1.5) Var(z ani&) =1
i=1
and
(1.6) Z Cov(&, &) — 0 as u — oo uniformly in k > 1
j:lk=j|>u

(see Cox and Grimmet [3]|). Then

n
Zam{i 2, N(0,1) as n — oo.

i=1

COROLLARY 1.1. Let {&;} be a centered sequence of linearly positive
quadrant dependent random variables such that {53} is an uniformly
integrable family and let {an;, 1 < i < n} be a triangular array of
nonnegative numbers such that

a’.
(1.7) supz G—',z,' < 00,
"=
(1.8) maxm—»Oasnﬁoo,
1<i<n oy

where 02 = Var(3_1_; ani&;). If (1.6) holds then, as n — oo

(19) =3 anits 2 NO,1).

" i=1

THEOREM 1.2. Let {aj,j € Z} be a sequence of nonnegative numbers
such that 3 a; < co and let {£j,7 € Z} be a centered sequence of lin-
early positive quadrant dependent random variables which is uniformly
integrable in Lo and satisfies (1.6). Let

x0 n
Xk = Z ak+j§j and Sn = ZXZ

j=—o00 i=1
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Assume

(1.10) inf n"102 > 0,
n>1

where o2 = Var(sn). Then
(1.11) % 2, N(0,1) asn — oo.

n

This result extends Theorem 18.6.5 in Ibragimov and Linnik [5] from
the i.i.d. case to the linearly positive quadrant dependence case by
adding condition (1.6) and improves on the central limit theorem of
Kim and Baek [6] for linear process generated by LPQD sequence.

2. Proofs

We start with the following lemma.

LEMMA 2.1. [8] Let {Z;,1 < ¢ < n} be a sequence of linearly positive
quadrant dependent random variables with finite second moments. Then

Var( ZZ)—ZVar Z;)

i=1

Eexp(thZ ) — HEexp itZ;)| < Ct?

Jj=1 Jj=1

for all t € R, where C > 0 is an arbitrary constant, not depending on n.

Proof of Theorem 1.1. Without loss of generality we assume that
ani =0foralli >n. Forevery 1 <a<b<nandl<u<b—awe
have, after simple manipulations,

0< Zanz Z an]COV gl}{?)

2.1) T .
< sup < > COV(Z:“k,&;)) (Z i)-
k —_
Filk—j>u i=a
In particular by (1.6), we have
(2.2) sup ( Z Cov(gk,gj)> < 00
BN k=gl

Without restricting the generality we can assume that supy, E§z =1.
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Hence, there exists a constant C' > 0 such that for every 1 < a <b
<n,

b b b-1 b
Var ( Z am'fi> < Z a,znVar(gi) +2 Z Qpj Z anjCov(&-, 5_7)
i=a i=a i=a Jj=i+1 .
b
< Z aj;Var(€;)
(2.3) =a N .
+ 2sup ( Z Cov(ﬁk,ﬁj)) (Zafn>
BN jk—gi> i=a

b
< C<Za;°‘“->

by (2.1) and (2.2).

We shall construct now a triangular array of random variables {Z;, 1
< 1 < n} for which we shall make use of Lemma 2.1. Fix a small positive
€ and find a positive integer u = ue such that, for every n > u +1

(2.4) 0< (z_:am- > anjcmz(gi,gj)> <e.
i=1

j=itu
This is possible because of (2.1) and (1.6). Denote by [z] the integer
part of x and define

e~ 1)

u(j+1)
Ynj = Z aniéiajzoala“'a
i=uj+1
Aj = {’l, 12K <i<2Kj+ K, COV(Yni,Yn7i+1)

2Kj+K

S-I-Q{— Z Var(Ym')}.

i=2Kj

Since 2Cov(Yp;, Yn i41) < Var(Yp:)+Var(Yn,i+1), we get that for every
Jj the set A; is not empty. Now we define the integers mi,mo,...,my
recursively. Let mg = 0 and

mj+1 = min{m : m > m;, m € A;}
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and define
mj+1
Z Yniv j:(),l,...,
i:mj+1

Aj={u(mj +1)+1,...,u(mjp1 + 1)}

’

We observe that

Z ank&k, a a e

keA;

By the definition of LPQD the sequence {Z;} is LPQD. From the
fact that m; > 2K (j—1) and m;41 < K(2j+1) every set A; contains no
more than 3 Ku elements and m;41/m; — 1 as j — oo. Hence, for every
fixed positive € by (1.2)—(1.5) the array {Z,; : ¢ = 0,1,...,n; n > 1}
satisfies the Lindeberg condition(see Petrov [10], Theorem 22, p.100),
that is, {Z,;} satisfies

n
(2.5) ot ZEZﬁjI(lZnﬂ > eop) — 0 as n — oo,

j=1

where o2 = Var(}_7_; Zn;). We can observe that by Lemma 2.1 and
the construction,

(2.6)
‘E exp(it Z Znj) — H E exp(itZy;)
1

{Var(i Znj) — Zj:Var(an)
< Ct2{ (Zcov(zm,zn m)) +2<Z Z Cov( Zm,Zn]))}

< Ct?

=1
i=1 j=i+2

n
ij=1 =1

n

+{27§am > anjCOV(fi,ﬁj)}]

Jj=itu

n

Z anjCov(&, §])}

Jj=i+u

= Ct? {4 Z Qni Z anjcov(g'i’ 5]) +2 z COV(Yn,mj ) Yn,mj+1)}

j=itu 7=1
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8 n
< Ct2{4e + 7 ZV&I’(Ym)}

i=1
g u(j+1)
= Ct2{4e + i7d ZVar(- Z ani&)}
j=1 i=uj+1
n u(ij+1)
<Ct2{4e+—z > a } by (2.3))
j=li=uj+1
n
< C’lt2e{1 +sup2afn-}
"=l

< Cyt’e for every positive e.

Therefore the problem is now reduced to the study of the central limit
theorem of a decoupled sequence {Z;Lj} of independent random variables
such that for each n and j, the variable Z;Lj is distributed as Z,;.

By (2.5), {Zy;} also satisfies the Lindeberg condition, that is, {Z;}
satisfies &1 > i1 EZ~2jI(|Z~nj| > €5,) — 0 as n — 0o , where 52 =
Var(3-0_, Znj), and hence by Theorem 7.2 of Billingsley [1]

(2.7) 571" Zny 25 N(0,1) as n — oo,
j=1
where 62 = Var(3"7_, Zyj)- Tt follows from (2.5), (2.6), and (2.7) that

n
(2.8) o} Z Znj 2, N(0,1) as n — oo,
j=1
where 02 = Var(Z?zl Znj), and now the proof is complete by (2.7),
(2.8), and Theorem 4.2 in Billingsley [1]. O

Proof of Corollary 1.1. Let Ap; = 2. Then we have

max A,; — 0 as n — oo,
1<i<n

Var(D  Api&i) = 1.

i=1
Hence, by Theorem 1.1 the desired result (1.11) follows. d
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Proof of Theorem 1.2. First note that 3 a? < oo and, without loss
of generality, we can assume that sup E{,% = 1. Let

Sn = ZXk = Z (Z%ﬂ)fy
k=1 j=-00

In order to apply Theorem 1.1, fix Wy, such that 33 .y, a3 <n~3 and
take k, = W, + n. Then

Sn Z (Zak“> & + Z (Zak+-7> =T, +U,.

a.
" lI<kn 151>kn

By the Cauchy Schwarz inequality and the assumptions we have the
following estimate

Var(Up) < C Z Var(Zak_H )

|3]>kn
2
<0 3 (Sosfon) 8
lil>kn k=1
<onoit S (k)
l7|>kn k=
<Cnfor? Y &
lj!>kn‘n
SCanr;Z Z a?
|5]>Wn

< Cn‘la,:2 —0asn—o o

which yields
(2.9) U, — 0 in probability as n — ooc.
By Theorem 4.1 of Billingsley [1], it remains to prove that T, 2,
N(0,1). Put
Z?:l ak+j

on '
From the assumption }° a; < oo (a; > 0), (1.10), and (2.10) we obtain

(2.10) Qnk =

n
SUP 0o <ck<oo Zj:l Ak+j
On

— 0 asn — o0,
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max anr — 0 as n — oo,
1<k<n

sup Z az, < 00. (see Remark below.)

Hence, by Theorem 1.1
(2.11) T, -2 N(0,1)
and from (2.9) and (2.11) the desired result (1.10) follows. O

REMARK. In the proof of Theorem 1.2, let us suppose on the contrary
that for some € > 0 there exists a subsequence (j ,n/), n' — oo such that
> k1 Uy > ea,,. Denote by A = SUP_ o <k<oo @ and notice that for

r> j/
ZakH > ea;L —2A(r — 7).
k=1
Hence
o2, it 2 i
s b5 (Zakﬂ) > ek, — a4y (i~ )
i=j’ i=j

> We2afl, —4Ao, ew?2.

Taking W to be the least integer greater than or equal to % and

3 ’ .
because 0, — 00, we obtain for n sufficiently large,

2 2 2
or 30 o 204,
I 5 o /36A 20,
b " h2ed T
which is a contradiction. O

ACKNOWLEDGEMENTS. The authors are exceptionally grateful to
the referee for offering helpful remarks and comments that improved
presentation of the paper.

References

[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

[2] T. Birkel, A functional central limit theorem for positively dependent random vari-
ables, J. Multivariate Anal. 44 (1993) 314-320.

[3] J.T.Cox and G. Grimmett, Central limit theorems for associated random variables
and the percolation model, Ann. Probab. 12 (1984), no. 2, 514-528.



538 Mi-Hwa Ko, Hyun-Chull Kim, and Tae-Sung Kim

[4] J. Esary, F. Proschan, and D. Walkup, Association of random variables with ap-
plications, Ann. Math. Statist. 38 (1967), 1466-1474.

[5] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of
Random Variables, Volters, Groningen, 1971.

[6] T.S. Kim and J. L. Baek, A central limit theorem for stationary linear processes
generated by linearly positive quadrant dependent process, Statist. Probab. Lett.
51 (2001), no. 3, 299-305.

[7] E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966),
1137-1153.

[8] C. M. Newman, Normal fluctuations and the FKG inequalities, Comm. Math.
Phys. 91 (1980), 75-80.

[9] , Asymptotic independence and limit theorems for positively and negatively
dependent random variables, In, Inequalities in Statistics and Probability (Y. L.
Tong, Ed.), IMS Lecture Notes-Monogragh Series, 5 (1984), 127-140 (Institute of
Mathematical Statistics, Hayward, California).

[10] V. V. Petrov, Sums of Independent Random Variables, Berlin, Heidelberg, New
York, 1975.

Mi-Hwa Ko

Statistical Research Center for Complex Systems
Seoul National University ‘
Seoul 151-742, Korea,

E-mail: kmh@srccs.snu.ac.kr

Hyun-Chull Kim

Department of Mathematics Education
Daebul University

Chonnam 526-702, Korea

E-mail: kimhc@mail.daebul.ac.kr

Tae-Sung Kim

Department of Mathematics and Institute of Basic Science
WonKwang University

Jeonju 570-749, Korea

E-mail: starkim@wonkwang.ac.kr



