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THE ENUMERATION OF DOUBLY
ALTERNATING BAXTER PERMUTATIONS

SOOK MIN AND SEUNGKYUNG PARK

ABSTRACT. In this paper, we give an alternative proof that the
number of doubly alternating Baxter permutations is Catalan.

1. Introduction

A Baxter permutation is exactly a permutation 7 = ajazas--- an,
(or we notate 7 = w(1)7(2)7(3)--- w(n)) in S,, the symmetric group on
[n] :={1,2,...,n}, that satisfies the following two conditions:
forevery 1 <i<j<k<li<n,

1. if a; +1 = q; and q; < a; then a; > ai,

2. if a; + 1 = a; and a; < ag then a; > a;.

For example, for n = 4, 2413 and 3142 are the only non-Baxter per-
mutations; 263154 and 5143762 are Baxter permutations. This class
of permutations was introduced by Baxter [1] in the context of fixed
points of the composite of commuting functions. These permutations
can be regarded as permutations with forbidden subsequences [11], say
Sn(25314,41352). For example, the set S, (25314, 41352) is a set of the
permutations of length n avoiding the patterns 2413 and 3142, each of
them being allowed in the case where it is itself a subsequence of the
pattern 25314 or 41352 in the permutation, respectively.

Chung, Graham, Hoggatt and Kleiman [2] have analytically showed
that the number of Baxter permutations of length n is given by the

formula
n+1 -1 n+1 ‘1271: n+I\/m+1\/n+1
1 2 r—1 r r+1/

r=1
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Later, Mallows [13] has found a more precise interpretation according
to the number of rises (indices i such that a; < a;+1). Moreover, he
gives a new formula for these permutations where the number of rises
7 is the only parameter which has a simple interpretation. Viennot [16]
(see also [5]) has given a combinatorial proof of the formula obtained
by Chung et al. [2] by establishing a one-to-one correspondence between
Baxter permutations and some column-strict Young tableaux for which
a formula is known. This correspondence is based on some classical bi-
jections such as between permutations and Laguerre history, between
two-colored Motzkin words and parallelogram polyominoes [4], and fi-
nally between non-intersecting paths and column-strict Young tableaux
[10].

A permutation is said to be alternating if the permutation starts with
a rise and then descents(indices 7 such that a; > a;4+1) and rises come
in turn. More precisely, an alternating permutation # = ajaz---ay is
such that ag;—1 < ag; and agiy1 < ag; for 1 < i < |n/2], that is to
say, its descent (respectively rise) set denoted by Des(m) (respectively,
Rise(m) ) happens at an even (respectively, odd) index. Cori, Dulucq
and Viennot [3] have established a one-to-one correspondence which has
proved that alternating Baxter permutations of length 2n and 2n+1 are
enumerated by c,c,, and c,cp41, respectively, where ¢, = ;% (2: ) is the
nth Catalan number. More recently, Dulucq and Guibert [6] have found
a new bijection which unifies [16] and [3], and have given a combinatorial
interpretation of Mallows’s formula [13].

A permutation is said to be doubly alternating if it is alternating and
its inverse is alternating. We will use

REMARK 1.1. (Guibert and Linusson [12], Remark 1) For enumer-
ation of doubly alternating Baxter permutations it does not make any
difference if we define alternating to start with a rise or with a descent.

Now we consider another way to regard permutations. An n-by-n
permutation matrix can be represented by an n-by-n array of squares
with one dot in each row and column and all the other squares empty.
The diagram of a permutation matrix (defined in 1800 by Rothe) is
obtained by shading every row from the dot eastwards and shading every
column from the dot southwards. We call a white square a white corner if
it has no white neighbor either to the east or to the south. The essential
set £(m) of a permutation 7 is defined to be the set of white corners of
the diagram of w. In other words, it is the set of southeast corners of
the connected components of the diagram. For every white corner of
7, its rank is defined by the number of dots northwest of the square.
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The essential set, together with a rank function, has been introduced by
Fulton [9]; it has been further studied by Eriksson and Linusson [7], [8].

Guibert and Linusson [12] have proved that the number of doubly
alternating Baxter permutations is Catalan in 2000. They have proved
it by the construction of the Rothe diagram and of the essential set. In
this paper, we give an alternative proof of their result by the maximal-
inversion-descent set which is defined in the next section. There is a
difference between a maximal-inversion-decent set and an essential set;
the essential set should be found by the diagram of the permutation while
the maximal-inversion-descent set could be known from the permutation
instantly. Guibert and Linusson [12] used the diagram of a permutation
to prove it, but in this paper we prove it without using the diagram. In
Section 3 we provide several properties of the maximal-inversion-descent
set. In Section 4 we state the main theorem.

2. The maximal-inversion-descent set

DEFINITION 2.1. A mazimal-inversion is a pair (%, b;) of the permu-

tation
(1 . U S n)
T = ,
a as .« a; e an

where b; is the maximum of ax’s such that ax < a; for all k& > 4, that is
to say, b; = max{ax | ar < a;, k> i}. The set of all maximal-inversions
of m, denoted by MI(w), is called the mazimal-inversion set.

123456

ExAMPLE 2.2. Consider 7 = < 4 6 251 3

) € Ss. Then the
maximal-inversion set is
MI(r)={(1,3), (2,5), (3,1), (4,3) }.

A somewhat more general result was proved by S. Min [14] and S. Min
and S. Park [15].

DEFINITION 2.3. A mazimal-inversion-descent of a permutation
in S, is an element (i,b;) in MI(w) with descent in position i. The
mazimal-inversion-descent set of m, MID(r), is the set of maximal-
inversion-descents: MID(w) = {(i,b;) € MI(rn) | n(i) > w(i + 1)}.

EXAMPLE 2.4.

1. Let # =

1 3 4
4 2 5
know that MT

2
6
D(m)

? g € Sg. Since Des(w) = {2,4}, we
{(2,5), (4,3)} by Example 2.2.
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\

2. Let o=
since M1(o)

[T

2 3 4 5 _ ‘
3 2 5 4 ) €S Then MID(o) = {(2,2),(4 )}

{(2,2),(4,4)} and Des(o) = {2,4}.

REMARK 2.5. The number of the elements in M ID(r) for every per-
mutation 7 € S, is equal to the number of elements in Des(7).

3. The property of the maximal-inversion-descent set

DEFINITION 3.1. (Fulton [9]) The essential set £() of a permutation
m € Sy, is defined as following;:

E(m) ={(6,4) € Ln =1 x [Ln =1 |n(3) > j, 7~'(j) > 4,
m(i+1) <j, 771G+ 1) <}
EXAMPLE 3.2. If r=4271635 € S7, then
E(m) ={(1,3),(3,1),(3,3),(3,6),(5,3), (5,5) }.

EXAMPLE 3.3. If 7 = 4271635 € Sy, then
MID(r) ={(1,3),(3,6),(5,5)} C &(n).

It is not appropriate to find out the essential set using only the def-
inition of the permutation; therefore, we use a diagram. Eriksson and
Linusson [8] have characterized the essential sets of Baxter permutations.
By the definition of the maximal-inversion-descent set, we see that it is
closely related to the essential set. Example 3.3 provides an example.
In general, it is true that for any permutation n € S,, MID(w) C ().
But the converse is not true. We note that for a given permutation w,
it is not easy to find the essential set of 7, but it is easy to know the
maximal-inversion-descent set of 7.

PropoOSITION 3.4. For a given permutation w € S,, the maximal-

inversion-descent set of 7 is a subset of the essential set of m, that is to
say, MID(m) C E(n).

Proof. 1t follows easily from Definition 2.3 and Definition 3.1. Let
(¢,b;) € MID(m). Then w(i) > n(i+1) and b; is the maximum of 7 (k)’s
such that m(k) < 7 (3) for all k£ > 3. We know the following facts: (a)
m(i) > b, (b) #71(b;) > 4, (c) m(i+1) < b; since the maximality of b; and
w(3) > m(i+ 1), and (d) 7~1(b; + 1) < i. (d) is verified as the following:
if 771(b; + 1) > i then (i) must be less than or equal to b; + 1 by the
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maximality of bi., i.e., by < w(i) < b; + 1. Therefore, (i) = b; + 1, but it
is impossible since m~1(b; + 1) > i. Hence (i,b;) € (7). a

We need the following theorem to prove that the number of doubly
alternating Baxter permutations is Catalan. It explains the relation
between the maximal-inversion-descent set and the essential set of a
Baxter permutation.

THEOREM 3.5. If a permutation 7 is a Baxter, then MID(n) = E(m).

Proof. Suppose that 7 is a Baxter permutation. By Proposition 3.4,
it suffices to prove that £(m) C MID(r). Let (¢,a) € £(m). Equivalently,
n(i) > a, 7" Ya) > i, 7(i+1) < @, and 77 (a + 1) < 4. Since 7(i) >
a > (i + 1)(ie. w(i) > w(i + 1)), there exists unique b; such that
(i,b;) € MID(7m) and by the maximality of b;, b; > a. It is enough to
show that @ = b;. Now we assume that a < b;.

By Proposition 3.4, (i,b;) € £(r). Equivalently, m(i) > b;, 7~1(b;) >
i, (1 + 1) < a(< b)), and 771 (b; + 1) < i. If (4,a), (i,b;) € E(m) with
a < b;, then the permutation 7 is the form such that

r=-(at+1) - m@mG+1) b
where it satisfies 7(7) > b; > a +1 > 7(2 + 1). It is proved as follows:
1. 77Y(b;) > i+ 1, since 7=1(b;) > 4, moreover, if 7(i + 1) = b;, then
a > m(i+ 1) = b;, but it is impossible by the assumption, a < b;,

2. 7Y a+1) <4, since if 7~(a+1) =i, then a+1 = 7(s) > b;, but

it is impossible, and
3. a+1< b sinceifa+1=b;theni <7 l(h)=n"a+1) <4,
but it is impossible.
Let b; —a =1, where [ = 2,3,.... Now we get the following facts:

1. 7n(d),n(t+1) ¢ {a+1,a+2,...,a+!}, since w(¢) > b; = a+1! and
(i +1) <a+1, and

2. there exists an integer k € {1,2,...,l—1} such that 77! (a+k) < %
and m~1(a+k+1) > i, since consecutive numbers a+1,a+2, ..., a+
[ are placed into the positions 7(1),...,7(i —1),7(i+2),...,7(n)
by 1, 7 Ha+1) < i, and 7~ Ha + 1) (= 771(b;)) > i.

Therefore we can construct a permutation 7:
m=---(a+k)---m@r(i+1)---(a+k+1)---.

It satisfies (i) > b; > a+k+1. Butn(i+1) <a+1<a+k+1.
Therefore, 7 is not a Baxter. It is a contradiction since « is a Baxter. O
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Guibert and Linusson [12] have characterized the essential sets of
doubly alternating Baxter permutations:

PROPOSITION 3.6. (Guibert and Linusson [12], Corollary 5) A per-
mutation is a doubly alternating Baxter permutation if and only if its
essential set has exactly one square in each even row that is not the last
row and in each even column that is not the last column.

Now by Theorem 3.5 and Proposition 3.6, we characterize the maxim-
al-inversion-descent set of doubly alternating Baxter permutations.

COROLLARY 3.7. A permutation © is a doubly alternating Baxter
permutation if and only if MID(w) = {(¢,j)|j = o(i)}, where o is a
bijection from {2,4,...,n—1— fi%)n]} onto itself.

4. The main theorem

THEOREM 4.1. If 7 is a Baxter permutation of length 2n with Des(r)
= Des(n™1) = {2,4,6,...,2n — 2}, then

™= (2k -+ 1) asasg - - - a2n_2k__1(2n) A2n—2k+1 " * G2n
such that {aon_ok11,..,02:} = {1,2,...,2k}, where 0 < k < n.

Proof. We will count the number of Baxter permutations of length
2n with Des(m) = Des(rm~!) = {2,4,...,2n — 2}. From Corollary 3.7, it
follows that a; is odd, say 2k + 1.

Assume k = 0. Then it is enough to show that as, = 2n. If not,
that is, a; = 2n for some ¢ = 2,3,...,2n — 1. Then, since 2n =
ai > a;41, there exists an element (i,a;) € MID(r), where a; =
max{ait+1, @i+2, - - -, a2n} and 7 and a; are even by Corollary 3.7. By def-
inition of a;, we can write that a; +1 = a,, for some m = 2,3,...,i - 1.
Clearly, a., is odd. First, if m is even, there must exist a,,41 which is less
than a,, by Corollary 3.7, since m is even and a,, is odd. Thus there is a
subsequence am (= a; + 1), @m+1, 2n, a; which does not satisfy a Baxter
condition. Second, if m is odd, the number of elements between a,, and
2n is zero or more than 2. In case of zero, (i — 2,a,-1) € MID(x) since
a; is the maximum among the numbers a;1,ai42,...,a2, and a;—2 is
less than am, = a;—1 = a; + 1. Then by Corollary 3.7, it is a contradic-
tion since a;_1 is odd. Otherwise, am+y1,Gm+2,-- - ,a;—1 must be larger
than a,, since 7 is a Baxter. Thus, (m —1,a; + 1) € MID(~x), but it is
also a contradiction since am(= a; + 1) is odd. Hence we conclude that
aon = 2n.
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Now, suppose that k& # 0. Choose (¢,2k) € MID(w). Then by
Corollary 3.7, ¢ is even. Consider a permutation 7:

o 1 I O
- 2k+1 as e a; cee 2k e .
Since (i,2k) € MID(r), by Definition 2.3, a; > 2k. By the Baxter
condition, a1(= 2k + 1),as3,...,a; > 2k. Then there is a one-to-one

correspondence between ajas - - - a; and 1by - - - b;, where b; = a; — 2k for
all j = 2,3,...,i. Thus 1by---b; is also a doubly alternating Baxter
permutation. Applying the similar arguments used in the proof of case
k =0, ¢ = b; must be 2n — 2k. Hence, ao,—or = 2n and the result
follows. a

EXAMPLE 4.2. A Baxter permutation 7 = 576 (15) (13) (14) 9 (11)
(10) (12) 8(17) (16) (18) 1324 of with Des(r) = Des(r™1) = {2,4,...,
16} length 18 is decomposed into two parts; 576 (15) (13) (14) 9 (11) (10)
(12) 8 (17) (16) (18) and 1324, where 576 (15) (13) (14) 9 (11) (10) (12)
8(17) (16)(18) is a one-to-one correspondence to the permutation 132
(11)9(10) 57684 (13) (12) (14).

Considering the definition, it is clear that if 7 = ajaz- - - ap of length
n is a Baxter permutation then its complement n* defined by 7* =
(m+1—a1)(n+1—ag) - (n+1—ay)is also a Baxter permutation.
Now, we know that asas - - - ag,_2k_1 is isomorphic to any permutation of
the mirrored complement of a doubly alternating Baxter permutation of
length 2n — 2k —2, that is to say, with descents in odd rows and columns.
The following corollary derives directly from the above explanation and
Remark 1.1.

COROLLARY 4.3. (Guibert and Linusson [12], Corollary 8) If 7 is
a Baxter permutation of length 2n + 1 with Des(m) = Des(n™!) =
{1,3,...,2n — 1}, then n(2n + 1) = 2n + 1. In particular, we have
don = dan+1, where dopte Is the number of doubly alternating Baxter
permutations of length 2n + ¢ (e = 0 or 1).

COROLLARY 4.4. (Guibert and Linusson [12], Theorem 3) daj4¢ is

the Catalan number ¢, = n+_1 (2:)
Proof. By Theorem 4.1 and Corollary 4.3, we get the recursion
n—1 n—1
don =Y  don-ok—2-dak = Y don—2k-1- dak-
k=0 k=0

This is the well-known recursion for the Catalan number. ]
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The next corollary follows directly from the definition of the comple-
ment of a permutation of length 2n. For example, 4231 and 2143 are
the only permutations which are the Baxter permutations of length 4
with Des(m) = Des(n™1) = {1, 3}.

COROLLARY 4.5. If 1 = ajas---agy, is a Baxter permutation with
Des(n) = Des(r™1) = {1,3,...,2n — 1}, then 7 = (2t)az--- a1
lagtyr--- agn such that {1,a9-1,..., as,2t} = {1,2,...,2t}, where
1<t<n. ,

EXAMPLE 4.6. A Baxter permutation = = (14) (12) (13)465(10)897
(11)231(18) (16) (17) (15) of length 18 with Des(r) = Des(n™!) =
{1,3,...,17} is decomposed into two parts; (14) (12) (13)465(10)897
(11)231 and (18) (16) (17) (15), where (18) (16) (17) (15) is a one-to-one
correspondence to the permutation 423 1.

The next corollary follows directly from Corollary 4.3 and Corol-
lary 4.5.

COROLLARY 4.7. If # = ajas - - - asn+1 is a Baxter permutation with
Des(m) = Des(n™!) = {2,4,...,2n}. Then a; = 1 and (az — 1)(a3 —
1)---(agns1 — 1) is a Baxter permutation with Des(m) = Des(r™!) =
{1,3,...,2n — 1}.

EXAMPLE 4.8. 7 = 1(15) (13) (14) 576 (11) 9 (10) 8 (12) 342 (19) (17)
(18) (16) is a Baxter permutation with Des(r) = Des(r~!) = {2,4,...
18}.

EXAMPLE 4.9. 15342 and 13254 are the only permutations of length
5 satisfying Corollary 4.7.

H
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