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A GENERALIZATION OF A RESULT OF CHOA ON
ANALYTIC FUNCTIONS WITH HADAMARD GAPS

STEVO STEVIE

ABSTRACT. In this paper we obtain a sufficient and necessary con-
dition for an analytic function f on the unit ball B with Hadamard
gaps, that is, for f(z) = >"32, Pn,(2) (the homogeneous polyno-
mial expansion of f) satisfying nes+1/ne > A > 1 for all k € N, to
belong to the weighted Bergman space

AZ(B) = {f| /B F@P(1L = 22V () < oo, f € H(B)}.

We find a growth estimate for the integral mean

([ 1reora©) "

and an estimate for the point evaluations in this class of functions.
Similar results on the mixed norm space Hp q,o(B) and weighted
Bergman space on polydisc A%(U™) are also given.

1. Introduction and preliminaries

Let z = (21,...,2,) and w = (wy,...,w,) be points in the complex
vector space C". By (z,w) = Y p_; zxwWi we denote the complex inner
product of z and w, and |2| = 1/(z, 2). Let U denote the unit disc in the
complex plane, dm(z) = rdrdf/m the normalized Lebesgue area measure
on U, B the unit ball of C", B(a,r) the open unit ball centered at a of
radius 7, dV the normalized Lebesgue measure on B, do the normalized
surface measure on the boundary S of B, and P(0,r;,7m2) = {w]|r1 <
|w| < r1}. By H(B) we denote the class of all functions analytic in B.
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For an f € H(B), the radial derivative Rf of f is defined by
n
Rﬂ@:}jﬂa }:Mmz
k=1
if f(2) = 3 pop Pr(2) is the homogeneous polynomlal expansion of f.
As usual, we write

‘ 1/p
17l = ( / lf(C)lpdcr(C)>
if p € (0, 00).

The expression A < B means that there are finite positive constants

C and C’ such that
CA<B<C(C'A

In [6] J. Miao investigates analytic functions f with Hadamard gaps
on the unit disk U, that is, those f such that f(z) = Y 72, ax2™ where
ng+1/nk > A > 1 for all k € N, which belong to the space Bp defined as
follows

BP ={f € HU) | |Ifllz» < o0},
where
1/p

1fllen = sup ( i |f’<z>1p(1—1z|2>p—2(1—lsoa(z)mdm(z)) ,

wa(2) = (a — 2)/(1 — @z), or to its subspace Bf consisting of those f
such that
it / [f'(2)P(L ~ )P 72(1 ~ |ga(2)[*)dm(z) = 0.

lal—1-0 Jy
He proves the following result.

THEOREM A. Let p € (0,00). If f(z) = ¥ 7o axz™ is an analytic
function on U such that ngt1/ng > A > 1 for all k € N, then the
following statements are equivalent:

(i) f e B

(ii) f € B;
(i) 2, ol < oo.

Some other classical results of this type can be found, for example,
in [4, 5, 13, 14].

An analytic function on B with the homogeneous expansion f(z) =
> %oy Pn.(2) (here, P,, is a homogeneous polynomial of degree ny) is
said to have Hadamard gaps if ng41/ng > A > 1 for all k € N. In [3

]
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among others, J. S. Choa generalizes Theorem A proving the following
result.

THEOREM B. Let p € (0,00) and f(z) = > _po P, (2) be an analytic
function on B with Hadamard gaps. Then the following statements are
equivalent:

@ fllx, = (fB Rf(2)[P(1 — |Z|2)p_1dV(z))1/p < o0;
(ii) Zl?;l ||Pn,c||§ < 00.

The weighted Bergman space Ah = A%(B), @ > —1, p > 0, is the
space of all analytic functions f on B for which

If 1.z = (/B |f(2)P(1 = Iz|2)"dV(z))1/p < 00.

The weighted Bergman space on the unit disk, polydisc or on the unit
ball has been investigated recently a great deal, see, for example, [1, 2,
7, 8,9, 10, 11, 12] and the references in there.

Motivated by Theorems A and B, in this paper, we investigate an-
alytic functions with Hadamard gaps, which belong to the weighted
Bergman space A% (B), the mixed norm space (see, Section 3) and on
the weighted Bergman space on U™ (Section 4). One of the main results
is the following theorem.

THEOREM 1. Let p € (0,00), @ > —1 and f(z) = Y po; Pn,(2) be
an analytic function on B with Hadamard gaps. Then the following
statements are equivalent:

(i) f e A%;
(i) S5 T < oo.

Now we gather auxiliary results which are used in the proof of the
main result. The following two lemmas can be found, for example, in [6].

LEMMA 1. [14] Let p € (0,00). If (ng) is an increasing sequence of
positive integers satisfying ngyi/ng > A > 1 for all k, then there is a
positive constant A depending only on p and A such that

e 1/2 e P 1/p o 1/2
1 <Z|ak12> < (2—/ > aget™? d9) <A (Zlak[2>
k=1 TJo o1 k=1

for any number ap, k € N.
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LEMMA 2. Let a > 0,p>0,n >0, a, > 0, In—{k|2"§k<
2"t k€ N}, tn = gy, 0k and f(z) = Y07, anz™. Then there is a
positive constant K depending only on p and « such that

K Z na — / a lfp(.’E)dx < KZ 2na

The following lemma is well known.
LEMMA 3. Let a, > 0 and ng € N. Then for p € (0,1],

1 9 no p no
() < (Sa) < ()
) n=1 n=1 n=1
and forp > 1,

no ngo p no
(Sat) < (Xon) < ().
n=1 n=1 v n=1

2. Proofs of the main results

In this section first we prove Theorem 1.

Proof of Theorem 1. As in the proof of Proposition 2 in [3], first we
use polar coordinates and Proposition 1.4.7 of [7]. We have

1£1%
=on [ [1560Pao(Q@ e

= 2n /O : /S = /0 | F(re0C) PdBdo(C)(1 — 1)1 dr
=2n/01/5%\/027r kool

dodo($)(1 — r2)er?nL4r,

p
Z Pnk (C)T‘nk einke

By the second inequality in Lemma 1 and the change p = r2

1 oo p/2
I1£1IP < 2n4? /0 /S (;wnk(c)ﬁrm) do(¢)(1 - r2)°r?Ldr
1 (o) p/2
= na? /0 /5 (z e (120 ) do(O)(1 — p)*p"dp
1

, we get
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1 o] p/2
< n4p /0 /S (Z |Pnk<<)|2p"k> do(O)(1 - p)*dp.

By the first inequality in Lemma 1 and the change p = 27, it follows
that
p/2

“f”Ap 2 AP/ /(Z | P, (€) |2 2nk> 0(()(1—r2)°‘r2"‘1dr

p/2

1
- %/0 /s (Z IPnk(C)lzp"k/"> do(¢)(1— p*/™)dp
k=1

oo p/2
(Z | Pr (C)I2p"’°> do (¢)(1 = p)%dp,
k=1

since p}/™ > p for p € [0,1], which implies

Zank OF > S P (O™

k=1

S

and since

_ L l/nya (1_p)a A"
(]- p ) - (1+p1/n+p2/n+.._+p(n_1)/n)a Zc(a)(l p) I

where C(a) = 1/n® when a > 0 and C(a) = 1 when a € (-1,0).
Thus

1P A// <Z | P ()12 "’°> (1 = p)*dpdo(Q).

By Lemma 2 applied to the integral

p/2
/ (Z ank ,2 nk) (1 - p)adp7

we obtain

o p/2
||f”igx/s kg (a+1 (Z | P, C)|2) do ().

Nm €l

Because ngq1/ng > A > 1 for all & € N, the number of P, when
nm € Ii is at most [logy 2] + 1. Using this fact and Lemma 3 it follows
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that

o0

111 = [ | g X 1PanlOP | do(0

k=0 nm€ly

Zza—i—l)k Z ”annp

k:O Nm elk

8

Form this and since n,, =< 2* when n,, € I, we get

P2
171, Az“ S

as desired. O

COROLLARY 1. Let p € (0,00), & > —1 and f(z) = >y Pni(2)
be an analytic function on B with Hadamard gaps. Then the following
statements are equivalent:

(1) ROFf e 4;
(i) Y e oT+f'ﬂlpE <

Proof. Since f has Hadamard gaps and RO f(z) = 322 nl P, (2) it
follows that R(® f has Hadamard gaps too. Applying Theorem 1 to the
function RY f we obtain that RY f € A% if and only if

Z Hn Pnk”P Z HPnka
a+1 a+1 lp 0,
k=0 "k

finishing the proof. O

REMARK 1. Setting Il = 1 and a« = p — 1 in Corollary 1, we obtain
Theorem B.

Since for n = 1, || Py, ||b = |ak|P, k € N, from Theorem 1 it follows
the following corollary:

COROLLARY 2. Let p € (0,00), @ > —1 and let f(z) = 1o, agz™
be an analytic function on U with Hadamard gaps. Then the following
statements are equivalent:

(i) f € ALU);

. s
(i) > peo n‘g& < 0.
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REMARK 2. Theorem 1 gives an estimation of the growth of the
sequence || Py, ||p. Since the series

i || P, |5
a+1
k=0 "

k

is convergent, we have

1Paclly = o(n{* V7).

THEOREM 2. Let p € (0,00), & > —1 and f(2) = Y peq P, (2) be an
analytic function on B with Hadamard gaps belonging to A5. Then

1f(2)llp =0 ((1—_72'1)(&7)/1,) as |z| - 1-0.

Proof. Let z =r( = |2|¢ and I, = {k | 2" < k < 2"1 k € N}. Let
first p > 1. From Remark 2 we have that for every € > 0 there is an
ko € N such that

(1) [| P llp < en,(ca+1)/p for k> ko.

Without loss of generality we may assume that kg = 1, since for every
l €N,

1
lim (1-—|z)@+tD/2N7 P, =0.
lzl—lgl—o( |l) Y P ()l =0

k=1
We have
1@l < D P @)l =D 1P (Ollpl2™
k=1 k=1
< 5Zn§ca+1)/p’z|nk
k=1
(2) < ey Y nltIgrm
k=0 nm €15
< E2:2(I<:+1)(0¢-|-1)/p Z ‘zlnm
k=0 nmEIk

= EZQ(k+1)[(a+1)/p—1]2k+l Z ||
k=0 nm €l



586 Stevo Stevié

< de | Culz] + 3 2 HDler/p-1l Y™ gk1, 2"

k=1 nm€l}
oo
< 4eChlzl +C2 Y 2= 1){(a+1)/p—1] Z |2|™
k=1 mel,_q

oo
< 4eChfz] + Cp Y kletD/p-l 1k,
k=1
where O = 2(@+1/P=2y; (n;), x1,(-) the characteristic function of the
set Iy, and Cy = 22(*+tD/Pg([log, 2] + 1). From (2) it follows that there
is a positive constant C such that

1 (2]l <eCD_(k+ 1)V z)k - e B,

k=0
It is well known [14, p.77] that
®) Sk D]zt < (1 o]y
k=0

from which the result follows in this case.

Assume now that p € (0,1). As in the first case we may assume that
(1) holds for every k € N. Then it holds

I1f ()5 Z || Py (2)115 < Z | Pri (OBl < SZH(QH)IzIImk
As in the ﬁrst case we obtain that there is a constant M 1 > 0 such that
(B < eMy Z(k +1)%|2[*".

k=0

Using (3) and the inequality (1—z)? < 1—pz, for z € [0,1] and p € [0, 1],
we obtain

eMsy eM>
P < <
WM = T Topyeet = G ey
as desired. 0
THEOREM 3. Let p € (0,00), @ > —1 and f(2) = > ;2 Pn,(2) be an
analytic function on B with Hadamard gaps belongmg to Ab. Then

(4) |[f(z)[=o0 ((1—_W:;(n+—a)/_p> as |z] - 1-0.
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Proof. By subharmonicity of |f|?, p > 0, we obtain

2n /
_ F(w)[PdV (w).
(1= 12D"™ JB(za-|2)/2) Fw)ldv(w)
For w € B(z, (1 — |2|)/2), we have

() 21— J2l) < (1= ful) < S(1 2.

By Theorem 2 it follows that for every € > O there is a § > 1/3 such
that

(5) [F (&P <

€

(7) (@I < A= e |z| > 6.
From (5)-(7) and by polar coordinates, we have
C
2P < P(1— *dv
P < e Lo g TP~ DV ()

C

p _ [0
5 o sy L = ) )

2wnC =
) (_’{z_'m /éJ_l;l IFrOIB(L = r)r® "~ dr

2nCe /
(1= [z])n+e 1 -7

_ 2nCeln3
(1 — |z])nte’

from which the result follows. O

REMARK 3. The basic estimate for the point evaluations on the
weighted Bergman space is the following (see, Corollary 3.5 in [1])

|I£1]a2

(8) If(2)] £ Wm,

the equality holds at some z € B if and only if f(w) = A(1~(z, w)) ~2(+)/p
for some A € C and every w € B.

Thus, our Theorem 3 can be considered as an improvement of es-
timate (8) in the subclass of A% consisting of the functions having
Hadamard gaps.
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3. The case of mixed norm space

In this section we consider analytic functions with Hadamard gaps
on the mixed norm space. The mixed norm space Hpgqo(B), p,g > 0
and a € (=1, 00), consists of all f € H(B) such that

£ llpga = ( / reoiEa - r)adr) ”

Note that when p = ¢, Hp4(B) is just weighted Bergman space. For
[ € Hp g.o(B), the following result holds:

THEOREM 4. Let f € Hp g4 and f(2) =3 oy P, (2) be an analytic
function on B with Hadamard gaps. Then the following statements
holds:

@) Ifp € (0,2), then 22, “’::J'P < oo implies f € Hpqa(B);

(i) If p > 2, then f € Hp,q,a(B) implies Y27 —ajJ"—ilﬁ < 00.

Proof. (i) Similarly to the proof of Theorem 1 we have

A1
Z Pnk (C)rnkez’nkﬁ

1 2r | &0
[ (=18
1 o p/2 q/p
p 2p2n Vi — r)%dr
<4 /0 (/ﬂ (;1%(0] ) d <<>> (1-r)*d
1 q/p
< AP/O (/S;m,k(g |Pr1mkdg(c)) (1 —r)dr
1 o] a/p
Y /0 <;|(pnk||grw> (1 = r)dr
1/ o a/p
= / (lePnkllﬁp"’“) (1—p)*dp
0 \g=1

o q/p o H
- P
= ZQ(aH)k ( > HanH”) Z Zil ,

k=0 Nm EIk

an

P /p
d9da(()> (1 —r)%dr
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where in the second inequality we used the condition p/2 < 1 and in the
first asymptotic relation “x<” the change p = r?.

(ii) Since p > 2, in the above sequence of relations the reverse in-
equalities hold, from which the result follows.

Theorem 4, by a similar argument to the proof of Theorem 2, gives
the next corollary.

COROLLARY 3. Let p > 2, a > —1 and f(z) = Y poy Pn,(2) be
an analytic function on B with Hadamard gaps belonging to Hp g «(B).

Then
1

“f(z)“p=0<m> as |z] - 1-0.

4. A version of Theorem 1 on the polydisc

Let L5(U™) denote the class of all measurable functions defined on
the unit polydisc U™ = {z € C"||z| < 1,i=1,...,n} such that

gy = [, 17 T = sy dmiz) < o0

where @ = (ai,...,ay), ¢ > —1,5 = 1,...,n. The weighted Bergman
space on U™ is defined as AZ(U™) = LE(U™) N H(U™).
THEOREM 5. Let p € (0,00), a; > -1, j=1,...,n, and

—E my _ E A
= agz = Ak1,....kn 21 Zn
k

k1 yeoskin>1
be an analytic function on U™, with Hadamard gaps in each variable,
that is, there are A\; > 1, j = 1,...,n, such that my,11/my; > A; for
every k; € N. Then the following statements are equivalent:
(i) f e ALU™);
(1) Ygomi Yopo=1 _‘L_kn‘T < 0o.
]—1
Proof. In order to avoid too much calculations we may assume that
n = 2. It means that the function f can be written as follows

o
©) flnzm)= Y amkz tzm =) Pu(2)n

klkp>1 k=1
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where
(10) Py (22) = Zakl,kzzz ?
ko=1

Let zj = rje%, j = 1,2. Then from (9) and by Fubini’s theorem we have

o g = g [ [T ]IS

p
Z P, (ZZ)ZTkl
1=1

d01(1 - T%)alrldﬁ) d92(1 — r%)azrzdrz.

Fix 2z for a moment. By Corollary 2 applied to the function

9z (21) Z Pp(22)7

k1=1
and to the integral
1 p2m ) m P
I(22) =/ / Z Py, (22)z; "t d6y(1 — r3)*1ridry
o Jo 5T
we obtain
| Pi, (22)|
(12) I(z) = Z 1a1+1
k1=1 kl

Substituting (12) in (10) and applying Corollary 2 to the functions in
(11), it follows that

IIfllpp

it

2
a1+1 / / ,Ph 22 lpd92(1 - 7‘2)a2r2d7'2

k] 1 K1
§ ka 102Mk2
K1,k2' 2

2
041+1/ /
kl 1mk1 ko=1

S .
- 011+1 a2+1 a1+1ma2+1 )

k1=1 kl ko=1 ko k1=1ko=1 ko

as desired. O

o0

i

d(92(1 — T2)a2r2d7‘2
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