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THE MONOTONY PROPERTIES OF
GENERALIZED PROJECTION BODIES,
INTERSECTION BODIES AND CENTROID BODIES

WUYANG YU AND DONGHUA WU

ABSTRACT. In this paper, we established the monotony properties
of generalized projection bodies IT; K, intersection bodies I; K and
centroid bodies I'; K.

1. Introduction

Let K™ denote the set of convex bodies (compact, convex subsets
with nonempty interiors) in R", and let K7 denote the subset of K™ that
contains the centered (centrally symmetric with respect to the origin)
bodies. For u € "' (n-dimensional unit sphere), let E, denote the
hyperplane, through the origin, that is orthogonal to u, and let K|E,
denote the image of the orthogonal projection of the body K € K™ onto
E,,. We shall use V; to denote i-dimensional Lebesgue measure. For V,
and V,,_1 we shall usually write V and v. If K is a convex body, then
its support function, hix(-) = h(K,-), is defined by

h(K,u) = max{u-z:x € K} for all u € S"7,
where u -  denotes the standard inner product of 4 and z. Obviously,
for K, Le K", K C Lifand only if hx < hr.

A star body in R™ is a nonempty compact set K satisfying [0, z] C K
for all z € K and such that the radial function pk(-) = p(K,-), defined
by

p(K,u) = max{\ > 0: \u € K} for all u € S*,
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is positive and continuous. The set of star bodies is denoted by L",
and let L7 denote the subset of £™ that contains the centered bodies.
Obviously, for K, L € L™, K C L if and only if px < pr.

For spherical Lebesgue measure on the i-dimensional unit sphere S°
we write S; and for S,,_1 we shall usually write S. We use w; to denote
the i-dimensional volume of the unit ball B; in R¢.

Let K € K™. The important geometric invariants related to the pro-
jection of convex bodies are the quermassintegrals defined by

WalK) =2 [ Vi(Kleydg, 0<i<n,
Wi JeeGin

where the Grassmann manifold G;, is endowed with the normalized
Haar measure £. The quermassintegrals are generalizations of the surface
area and the volume, and the mean width. Indeed, nWi(K) is the
surface area of K, and Wy(K) is the volume of K, and (2/wy)Wp_1(K)
is the mean width of K. The dual quermassintegrals of a star body K
are defined by

Wos) =22 [ ViKne)dg, 0<i<n,
Wi JeeGin

Wo(K) = V(K) and Wy, (K) = w,. While the quermassintegrals are con-
nected with the projection of convex bodies, the dual quermassintegrals
are closely related to cross sections of star bodies [8, 9, 10, 19, 21], they
play important roles in the study of the well-known Busemann-Petty
problem [2, 3, 22, 24].

The i-th projection bodies II; K were introduced by Lutwak [12] as:
Let Ke K"and 0<i<n-—1,

(1.1) bk (u) = w;(K|E,) for all u € "1
The -th intersection bodies I, K were introduced by Zhang [21]. Note

that here the definition of I; K equals to that of I,_1_; K given by Zhang
for the sake of uniformity. Let K € L" and 0 < i< n—1,

(1.2) pur(u) = Wi(K N E,) for all w € ™1

The i-th centroid bodies I'; K are defined here for the first time. Let
KeKrand0<i<n—1,
(1.3)

1
hr.k(u) =

(n + 1)Wi(K)
Here we call II; K, I;K, and I';K as generalized projection bodies,
intersection bodies and centroid bodies, respectively. Obviously, for ¢ =

/ |u - v|px (v)" %S (v) for all uw € S™7 L.
Sgn—1
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0, IIyK, IpK, and I'oK turn into the well known projection bodies
I1K, intersection bodies IK and centroid bodies 'K, respectively [4, 10,
11, 15, 16, 19]. We shall use II*,I", and I'" to denote the set of n-
dimensional projection bodies, intersection bodies and centroid bodies
respectively. II7 denote the class of polar of bodies in II".
Shephard [20] posed the question: If K, L € K7, and
v(K|E,) < v(L|E,) for all u € ™1,
does it follow that
V(K) < V(L)?
Petty [16] and Schneider [18], independently, showed that the answer is
no, in general, but if L is a projection body, then the answer is yes, and
according to the definition of projection bodies, their theorem can be
expressed as:

THEOREM 1. If K € K, L € I, and TIK C TIL, then
V(K) <V(L),
with equality if and only if K and L are translates of each other.

Lutwak showed that intersection body IK and centroid body 'K are
also have the similar properties.

THEOREM 2. [10] If K € I", L € L™, and 1K C IL, then
V(K) < V(L),
with equality if and only if K = L.
THEOREM 3. [11] If K € £, L € I}, and TK C T'L, then
V(K) < V(L),
with equality if and only if K = L.

The aim of this paper is to present the similar monotony properties
of the generalized projection bodies, intersection bodies and centroid
bodies. We shall establish the following theorems that are closely relative
to the forementioned theorems.

THEOREM 1*. Let K e K", LeII*. If 0 <i<n —1, and

(1.4) ILK C L,
then

with equality if and only if K and L are translates of each other.
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THEOREM 2*. Let K e I, Le L™ If0<i<n—1, and

(1.6) LK c L,
then
(L.7) Wi(K) < Wi(L),

with equality if and only if K = L .
THEOREM 3*. Let K e L", L€ II}. If0 <i<mn—1, and

(1.8) ItK cTL,
then
(1.9) Wi(K) < Wi(L),

with equality if and only if K = L.

A similar result to Theorem 2* has been given by Zhang [21], but
here we shall propose a stronger result which regards Theorem 2* as its
special case.

2. Preliminaries

To prove the theorems in the above section, we first make some prepa-
rations.

If Ki,...,K, € K™ and Aq,..., A € R, then the Minkowski linear
combination, A1 K; + - - - + A\ K, is defined by

MK+ MK ={ A o € KL

Of fundamental importance is the fact that the volume of a Minkowski
linear combination can be expressed by a symmetric homogenous n-th
degree polynomial in the JA;, i.e.,

(2.1) VK + -+ M E) =D Vipindi - i,

where the sum is taken over all n-tuples of positive integers (i1, ...,n)

with entries not exceeding r. The coefficient V;, ...;,, depends only on the

figures K;,, ..., K;,, and is uniquely determined by (2.1). It is called the

mixed volume of Kj,,..., K;,, and written as V(K;,,..., K;, ) [9, 19].
For K € K™, the i-th quermassintegral is denoted by

(2.2) WilK) = V(Koo K, B2 B)

n—1 i




The monotony properties 613

LemMma 2.1 [T IfK,L € K",0<j <n-—1, then
(23)  V(K,...,K, Bn,...,Bn, L7 > W;(K)"77'W;(L),

n—j—1 j

with equality if and only if K and L are homothetic .

The inequality (2.3) is a special case of the Aleksandrov-Fenchel in-
equality, but the equality condition in the Aleksandrov-Fenchel inequal-
ity is, in general, unknown [1, 7, 19].

Let Kj,...,K,—1 be fixed convex bodies, one can view V(Kj,...,
K, _1,-) as a functional defined on K”. If each K € K" is identified
with its support function on S"~!, h(K,u), then V(Ki,...,Kn_1,)
can be uniquely extended to a continuous functional on C(S™7!), en-
dowed with the maximum norm. According to the Riesz representation
theorem, there exists a unique positive Borel measure on S™~!, denoted
by S(Ki,...,Kn-1;"), such that for any L € K7,

(24) V(Ki,...,Knoy, L) = %/5 B(L,0) dS(K, ., Kn-150).
The measure S(K1,...,Kn—1;-) is called the mixed area measure of
Kl,...,Kn_l. For Kl = =NAp_1—i = K and Kn—i = =RNp_1=
B, we call it the i-th surface area function of K, denoted by S;(K;-).
In particular, for K1 = --- = K,_1 = K, we call it the surface area
measure of K, simply denoted by S(Kj;-).

For u € S"!, the mixed volume v(Ki|E,,...,K,—1|F,) can be de-
noted by

(2.5) ’U(KllEu, R ,Kn_1|Eu) = nV(Kl, ceey Kn_l,ﬂ),

where @ denotes the closed line segment {A\u : |A| < 2} [9].
Since h(#@,v) = 3u - v|, from (2.4) and (2.5) one obtains

1
(2.6) v(K1|Ea,..., Kn1|Ey) = 5/5"_1 -] dS(K1,. .., Kn_13v).

ForO0<i<mn,taking K1 =---=K,-1s=K,and K;,_; = --- =
K,_1 = By, in (2.6), we obtain the following lemma.

LEmMMA 2.2 [12] If K € K™ and 0 < ¢ < n then

(2.7) w(KIB) =5 [ lusol dSi(Ksv)
Sn—1
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where w; denotes the i-th quermassintegral in R"71, i.e.,

w,(K|Eu) = ’U({(|Eu, e ,KiEu, ?n—l; ey Bn_ll)'

-~

"
n—1—1 7

For the Brunn-Minkowski theory one can consult Gardner and Schnei-
der [4, 19].

If z1,...,2, € K*, then 21+ - - +x, is defined to be the usual vector
sum of z1,...,Z,, provided z1,...,z, all lie in a 1-dimensional subspace
of R™, and as the zero vector otherwise. If L; are star bodies in R”,
and t; € R, (1 <4 < m), then the radial Minkowski linear combination,
t1L1+ - - - Ft,, is defined by:

tlLl-T- - J—tmLm = {tl.’tl:ll v —T—tmxm 1 x; € Lz}
For arbitrary v € S™7!, there are
pt1L1;~~':|-tmLm(u) = tlle (u) +ooet tmme(U).

Let L; € L*(1 < j < n), the dual mixed volume V(Li,...,Ly) [8] is
defined by

V(Ly,...,Ly) = 1 /Sn—l pr,(u) -+ pr, (w)dS(u).

n

For K € L™, the i-th dual quermassintegral is denoted by

Wi(K)=V(K,...,K, Bn,...,By)

-

(2.8) . ni i
~1 / ok (W)™ dS(w), (0 <i<n).
Sn—l

n

For the dual Brunn-Minkowski theory one can consult Lutwak, Gard-
ner and Schneider [8, 10, 11, 4, 19].

Two star bodies K and L are said to be dilates (of one another) if
P (u)
pr(v)

Suppose that f is a Borel function on S™1, the spherical Radon
transform Rf [6] of f is defined by

is independent of v € 71

(2.9) (R)(u) = / F(6)dSn_s ().

S-1nE,
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Using spherical Radon transform, the definition of the generalized inter-
section body I; K can be rewrited as
(2.10)

1 nel—i _ I i
ot = 25 [ ooy s, a0 = R ()

Two important properties of the spherical Radon transform are : (1)
The spherical Radon transform is a continuous bijection of C°(S™1)
to itself; (2) The spherical Radon transform is self-adjoint, that is: if f
and g are bounded Borel functions on S™"1, then

e [ fwRewdSw = [ Rfwwas).

gn—1

For K € K7 (the set of convex bodies containing the origin in their
interiors), the polar body of K, K*, is defined by

K'={zeR':z-y<lforallye K}.
It is easy to verify that for v € S™~1,

(2.12) hK* u) =

3. Mixed p-quermassintegrals and mixed p-dual quermass-
integrals

Mixed p-quermassintegrals were introduced by Lutwak [13]. For p >
1,0 <i<n-—1,and K, L € K7, the mixed quermassintegrals W, ;(K, L)
have the following integral representation

31) W (K.L) = % [S  ha (P () P ASi (K ).

Obviously, if K = L, then the Mixed p-quermassintegrals W, ;(K, L)
will turn into the quermassintegrals W;(K).

In this section we shall introduce the notion of Mixed p-dual quer-
massintegrals and give some properties. These properties will play im-
portant roles in proving Theorem 2* and Theorem 3*.

For K,L € L™ and p > 0, we define the mized p-dual quermass-
integrals as follows

(3.2) W—pi(K, L) — —Pp lim Wi(Kq—_p £ - L) — Wz(K)

7 — 1 e—0+ €

)
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where the p — harmonic radial combination K+_, ¢ - L € L™ [14] was
defined by

(3.3) p(K¥_pe-L,)?=pK, )P +ep(L,)P.
Meanwhile, we define

(3.4) Woi(K,L) = lim, W_pi(K,L).
p—
From (3.2), (3.3), and (3.4), the mixed p-dual quermassintegrals
W_p (K, L) have the following integral representation.

LEMMA 3.1 Let K,L € L™ Then for 0 <i<n-—1andp >0, we
have

1

35 WD = [ oo Pas(w),

Proof. When p > 0, from (2.8) and (3.3), we have

L Wil BF—pe - L) — WiK)
e—0t

g
— 3 i 1 . n—i __ n—i
= im L / [0(K T —p & - Lu)"™* — p(K, "] dS(u)

1 n—i .
— i -p - _ n—i
Jim, = ) e 0 ep(D) ) = oK w s
- p(K,w)" P p(L,u)"PdS(u),

—pn sn—1

where the last equality can be got according to the L’Hospital’s rule [17].
Combine (3.2) just get (3.5).

From (3.4), it’s easy to know that when p = 0 the representation still
hold and Wo (K, L) = W;(K). O

From Lemma 3.1 we can obtain the following Theorem.

THEOREM 3.2 Let K, L e L™ Thenfor0<i<n—1andp >0, we
have

(3.6) W_ps(K, L™~ > Wi(K)""+PWi(L) P,
with equality if and only if p =0 or K and L are dilates of each other.

Proof. If p = 0, from (3.5) it is obviously that (3.6) holds with
equality. So, we consider p > 0. From (3.5) and Holder inequality [5],
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we obtain
W_,4(K, L)
- / PR Pp (w) PdS ()
1 . = . i
22 [ ewtriasw)] T [ swras)

= Wi(K) = Wi(L) "%,
that is,
W—p,i(K7 L)n_i > W’i(K)n‘i-i-pM/i (L)—P'
From (3.5) and the equality condition of Hélder inequality, we know
that the equality holds in (3.6) if and only if p = 0 or K and L are
dilates of each other. O

THEOREM 3.3 Let K € I, and L,Q € L™ If for all w € S ! and
some0<i<n—1

(3.7) {I:_p,i(KnEu,QmEu) < ﬁ_p,i(LnEu,QnEu),
then
(3.8) W_pi(K,Q) < W_pi(L,Q),

with equality if and only if K = L.

Proof. Let M € L™ , define a body MecLr by
(3.9)
1

~ 1
— n—1 — n—1 )
Pt =5 [ ol asiea(o) = (GIROAW)
It follows from (2.10) that M is the intersection body of M. Then from
(2.10), the self-adjointness of Radon transform (2.11) and (3.5), we can
get

1

n /sn_l PK(u)n—i+p—1pQ (U)_ppﬁ(u)dS(u)

= [ o g0 (LR W) dS(w

n

_—_%/g B n_ii (R(an—i-f-P—lpZ?p)(u)) pM(’U/)n~1dS(’u,)

_1 / W_pi(K O By, QN Ey)p(M,u)" " 1dS(u).
gn—1

n
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Similarly,

% /sn_1 pL(u)n—i—i—p—po(u)—PpM(u)dS(u)

1
-2 / Fpi(L N Eu, @ N Eu)pas () 1dS ().
sn—l

So from condition (3.7), it follows that

% /’n—l pK(u)n_i”’_po(U)—ppM(u)dS(u)

(*) !

=n / L pr () TP pg () Py (u)dS (u).

It’s true that the inequality (%) holds for any M since the M is an
arbitrary star body.
Taking M = K in (%), by (3.5) and Hélder inequality, we have

W_pi(K,Q)

= [ ey oo Pdsw

<2 [ o () Ppk(w)dS(w)

1 —p(n—itp—1)

— o [ o ) R g ) prc (S ()

n—it+p—1
n—itp

< (5 [ mtr=no(uyrasiw)

1
n—i+p

< (& [ oxtwrng(uyas)

n
e noitp—l ~ 1
Tl @Ik,
Thus we obtain
W_pi(K,Q) < W_pi(L, Q).

From the equality condition of Hélder inequality and condition (3.7), we
know that the equality holds in (3.8) if and only if K = L. |
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4. Proofs of the theorems

Proof of Theorem 1*. Suppose that u1,...,um € S" LTand A\1,..., Am
are positive numbers. Put

m
Z = Z )\jﬂj,
j=1

where u; denotes the line segment [—u;,u;],7 = 1,...,m. Then Z is a
zonotope with the support function

h(Z, ) = Z )\lej, |
ij=1

Thus by (2.7) and (2.4), we obtain

m m
1
S Aw(KIE,) =5 [ 13" Ayl -ol) dsi(K;v)
=1 St =1
= l/ h(Z,v) dS;(K;v)
2 Sn—1
- Lov,... K, Ba,... B, 2)
n—— 2
Similarly,
= 1
> \wi(L|Ey,) = 52V L, Bn,...,By, 7).
j=1 n—i—1 i

So from condition (1.4) and (1.1), it follows that
(41) V(K,...,K, By,...,Bn, Z)<V(L,...,L, Bn,...,Bn, 2),
n—i— (3 n—t1— (3

for any zonotope Z.
Since any projection body is the limit (with respect to the Hausdorff
metric) of zonotopes, by (4.1), this implies for any M & II*

(4.2) V(K,...,K, Bp,...,Bn, M)<V(L,...,L, By,...,B, M).
R A N N N —

n—i—1 i n—i-1 i
Taking M = L in (4.2), we get
(4.3) V(K,...,K, By,...,Bn, L) < Wi(L).
e’ N e’

n—i—1 i
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Applying Lemma 2.1 to the left hand of (4.3), it yields that
Wi(K)(n—i*l)/(n—'i) Wi(L)l/("—i) < Wi(L).

Hence we obtain the desired result (1.5), with equality if and only if K
and L are homothetic. Furthermore, if W;(K) = W;(L), then we easily
derive that K and L are translates of each other. |

Proof of Theorem 2*. It is the special case of p = 0 in Theorem
3.3. a

Proof of Theorem 3*. From (3.1), (1.3), Fubini theorem, (1.1), (2.12),
and (3.5), it follows that

Wii(L, T K)
1

= —/ hr,x (u)dS;(L, v)
n sn—1

= n(n-}—ll)W(K) /sn_l /n_1 |u-’UIPK(U)TL+1—idS('U)dSi(L,u)

T n(n+ 11)”147(K) / / [ 0ldSi(L w)p (0) TS (0)

= 2 v )yl
T nn+ DWi(K) / b,z (v)px (0 dS (v)
2 1

T (AW / L pmn(0) Tk (v) TS (v)

2 o~
- —"T"—W_l’i(K, H:L)
(n+ 1)Wi(K)

Since M € II?, choosing My € K™ such that M = II{ My, it yields that
2

(4.4) Wy s(Mo, TiK) = ————————W_1i(K, M).
(n+ 1)W;(K)
Taking K = L in (4.4), we get
92 —
(4.5) Whi(Mo, TiL) = ——————W_1,(L, M).
) (n+ 1)W;(L)

From condition (1.8) and the monotony property of Wi ;(Mpy, ), it fol-
lows that

Wori(K, M) _ Wo14(L, M)

(4.6)
Wi(K) Wi(L)
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Taking L for M in (4.6) and from (3.5) we get

W AL L) -~

Wil L) _ 5 k)
Wi(L)

Applying Theorem 3.2 to (4.7), we obtain that

(4.8) W_1,:(K, L™ > Wi(K)"~*F1W;(L) ™.

The inequality (1.9) is now an immediate consequence when we combine
(4.7) and (4.8) with equality if and only if K = L. O
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(4.7) W_14(K, L) < Wy(K)
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