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CENSORED FUZZY REGRESSION MODEL

SEUNG HoEe CHOI AND KYUNG JOONG KIM

ABSTRACT. Various methods have been studied to construct a fuzzy
regression model in order to present a fuzzy relation between a de-
pendent variable and an independent variable. However, in the
fuzzy regression analysis the value of the center point of estimated
fuzzy output may be either greater than the value of the right end-
point or smaller than the value of the left endpoint. In the case, we
cannot predict the fuzzy output properly.

This paper presents sufficient conditions to construct the fuzzy
regression model using several methods investigated by some au-
thors and then introduces the censored fuzzy regression model using
the censored samples to manipulate the problem of crossing of the
center and the end points of the estimated fuzzy number. Exam-
ples show that the censored fuzzy regression model is an extension
of the fuzzy regression model and also it improves the problem of
crossing.

1. Introduction

The equation in which the relation between the dependent and in-
dependent variables is expressed into a mathematical model, is called a
regression model, being expressed, as follows:

yi=f(1'1;,00)+6i, 1=1,2,...,n,

where z; is an independent variable, y; is a dependent variable, ¢; is an
error term, and 6y is an unknown parameter.

It seems that in regression analysis a difference happens between the
actual value of a response value and its estimator owing to errors arising
from measuring the real value of the respond variable. Therefore, the
value minimizing the difference between the real value and its estimator
is used as the estimator of regression parameters. However, in the actual
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state of things, all reactive variable values cannot be precisely measured.
There exist ambiguity and vagueness in cases such as human subjective
appraisal or judgment. In order to inquire into those regression models
that have as their reactive variables such materials as include ambiguity
and vagueness like linguistic variables, Tanaka et al. [15] proposed the
following fuzzy regression model for the first time:

(1.1) Yi:Ao—l-Alxil—l--'--l-ApIip,i=1,2,...,n,

where A; and Y; are fuzzy numbers and z;; is a positive non-fuzzy num-
ber. And py, and p4, are membership function of ¥; and A;, respectively.

Several methods were presented to estimate fuzzy regression models.
Developed in Tanaka [13, 14, 15, 16], Savic and Pedryzc [12], Kao and
Chyu [8] and Chang and Ayyub [2] were numerical methods that mini-
mize the fuzziness of the response variables, while studied in Diamond [5,
6, 7], Ming et al. [10], Chang [1], and Chen [4] were statistical methods
that minimize the difference between the estimated and observed out-
puts. The fuzzy least squares method applies the least squares method
used in ordinary regression models to fuzzy regression models and it
estimates fuzzy models by first defining the distance between two fuzzy
numbers and then generalizing to the distance in fuzzy regression mod-
els. Unlike ordinary regression models, the fuzzy output estimated using
the least squares method must be fuzzy numbers. However, as in Ex-
amples 2.3, the value of the center point of estimated fuzzy output may
be either smaller than the value of the endpoint on the left or greater
than that on the right. That is, the example given in Section 2 is not
fit to be explained with the fuzzy regression model. When analysis is
inappropriate with a fuzzy regression model as in Example 2.3, such
sufficient condition should be taken into account as can be described
with the fuzzy regression model. Furthermore, in case that there arises
a phenomenon in which the center point of the estimated fuzzy output
is unable to satisfy the given sufficient condition because of cross end-
points on the right or the left side, new methods are required to solve
such a problem.

This study presents the sufficient condition for the fuzzy regression
model and introduces a model using some techniques of censoring to
work out the problem that the center and end points in estimated fuzzy
regression numbers cross each other. Moreover, it identifies the fact
through examples that the fuzzy regression analysis using censored sam-
ple is an extension of fuzzy regression analysis and at the same time
serves as a method to handle with the problem that the center point
and the end points of the estimated fuzzy output cross.
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2. Fuzzy regression model

We define A; = (aj,;,7;) and Y; = (y;,1y,, ;) as LR-fuzzy numbers
to suggest the sufficient condition for the fuzzy regression model. Then,
an a-cut of fuzzy number A;, written A;(a) is defined as

Aj(@) = {zlua, > a} = [a; — LD (a), a5 + 7RV (),

where L and R are reference functions on the right and the left side,
respectively. A triangular fuzzy number is represented by the shape
function L(z) = R(z) = 1 — z. In particular, {x|pa, > 0} is called the
support of fuzzy number A; and a;—I; and r; —a; are called a left spread
and a right spread of fuzzy number A;, respectively. See Zimmerman
[18]. The difference between two fuzzy numbers A; and A; equals

[Ai(e) — A;(a), Aier) — 4;(a)],

where A;(a) = a; — ;LY (a), Aj(e) = aj + ;R V(@) and 0 < a < 1.
In order to construct the fuzzy regression model many scholars de-
fined the distance between two fuzzy numbers A; and A;.
Diamond was defined the distance between two fuzzy numbers as

Dg(Ai, Aj) = (Ai(1) — 4;(1))* + (4:(0) — 4;(0))% + (4:(0) — 4;(0))?,
that of Ming et al. as

(i 49) = [ [ {(4s0) ~ 4@ + (@) - Ay(@)?)dal’,
that of Chang as

; () — A:(a))?
Den(As, A;) = Jo {(As ﬁ(a));;r ;Az(a) Aj(a)) }ada,
0 aac

and that of Chen as

Du(Ai, A7) = = / {(As (@) + (Ai(a) — Aj(a))}da.

On the other hand, in estimating the fuzzy regression coefficients we
can use the distance between two fuzzy numbers which is derive from
the generalized Hausdorff distance as

(2.1) (Ai(a) = 45(@)* + (Ai(a) — Aj(a))”.
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However, in this case solution may not exist or the uniqueness of the
solution cannot be guaranteed in a normal equation. Therefore, an an-
other distance between the fuzzy numbers needs to be defined to use the
least squares method in the fuzzy regression analysis.

In this paper we construct the fuzzy regression model using the dif-
ference between fuzzy numbers as

Dy(Ai, A7) = ((As(1) = A4;(1))* + (Ai(e) = 45(a))* + (Ai(e) = 4j(e))?,

which is a transformed equation of equation (2.1), to find the unique
solution in a normal equation. Especially, the distance Dy(A4;, A;) is
easily seen to be a special case of Df(A;, A;) when o = 0.

As the results of the fuzzy simple regression model with two param-
eters can be naturally extend to the fuzzy model with several fuzzy
regression coefficients, in this paper we consider the fuzzy simple regres-
sion model.

The least squares fuzzy estimators of the fuzzy regression coeflicient,
denoted by A, are the value which minimize the objective function

n
Qn(a,l,7) =) Dg(Y;, Ag + Aizs).

i=1
And we should consider the following conditions to provide for such a
case not to occur in which the center point and the end points of the
estimated fuzzy output cross.

Throughout this section, we want to make the following Conditions

in the fuzzy regression model (1.1):

CONDITION A.
mn

Ay Z(l’z — Zn)(ly; — ly,) > 0.

i=1

Ap ) (@i — En)(ry, — Tyo) > 0.
=1
n

Aj: Z(xz — in)(jnlyi — xil_yn) > 0.
=1
n

Ay Z(xz - :En)(a‘cnryi - .’Ei’l:yn) > 0.
i=1
In the above conditions, Zy, 7y, , and l_yn signify the standard mean of
input and of the right endpoint and the left endpoint in fuzzy output,
respectively.
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We present the sufficient conditions for the fuzzy regression model in
the following theorem. For the proof, see Diamond [5].

THEOREM 2.1. For the fuzzy regression model (1.1), suppose that
Condition A is fulfilled. Then the left spread and the right spread of the
estimated fuzzy output are always greater than zero. That is, estimated
fuzzy output satisfies the condition for fuzzy numbers.

As before mentioned, many scholars defined the distance between
two fuzzy numbers, and estimated regression coefficients by applying
the defined distance to the fuzzy regression model. We denote the value
that minimizes objective function Y ; Dg(Y;, Ao+ A;x;) using the fuzzy
distance Dy(Y;, Ao + Aix;) suggested by Diamond as Ad, Similarly to
Ad we denote the estimator suggested by Ming as A™ that by Chang
as ACh and that by Chen as A°.

The following theorem shows that fuzzy regression coefficients esti-
mated by mutually different methods are the same.

THEOREM 2.2. Suppose that the fuzzy regression model (1.1) satisfies
Assumptmns given in Theorem 2.1. Then, estimators Ad estimators
A™ estimators A", and estimators A® are all the same as the least
squares fuzzy estimators A suggested in Theorem 2.1.

Proof. 1t suffices to show that the mutually different fuzzy estimators
have same normal equation. For this, the derivatives of the function
Qn(a,l,7) with respect to the six unknowns need to be derived, set to
zero, and then solved for the six unknowns. From the derivatives of the
function Qn(a,l,r) with respect to the unknowns ag, a1, lo, l1, 70, 71
and rearranging the terms of equation, we obtain the following six sets
of normal equations which are well-known equations:

n n n n n
2
nag + E T;ay = E Yi, E T;ag + E ;a1 = E TiYi,
i=1 i=1 i=1 i=1 i=1
n n n k3 n
2
nlg + E zily = E Ly, E xilo + E xil = E Zily,,
i=1 i=1 i=1 i=1 i=1
n n n T n
2
nrg + E Tiry = E Tyis E x;iro + E xi'ry = E LTy, -
i=1 i=1 i=1 i=1 i=1

By simple calculation, we know that the sets of the normal equations
n n

for the objective functions ZDd(Yi, Ao + Aix;), ZDm(Y;, Ao+ Aix;),
i=1 i=1
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ZDch (i, Ao+ A;x;), and ZDC(YH Ag+ A;x;) are all equal to the form

i=1 =1
of the normal equations given from above. So, the four fuzzy estimators

are all identical. O

EXAMPLE 2.3 Table 2.1 shows the data suggested by Chang [3] and
analyzed with Pierpaolo [11].

TABLE 2.1: Numerical data for Example 2.3

Independent Response
variable variable

148 (59.7, 13.7, 18.3)
18.0 (63.5, 17.5, 20.5)
22.9 (66.8, 18.8, 19.2)
315 (70, 26, 26)

50.3 (67, 17, 21)
126.0 (62.2, 8.2, 11.8)

The fuzzy regression model using non—fuzzy input z; and fuzzy output
Y; in Table 2.1 results in

= (44.716 + 0.075z;,65.478 — 0.014x;, 88.341 — 0.091x;).

The left endpoint, 62.716, of the fuzzy output value for input value

x = 240 is larger than its center, 62.118 and the right endpoint, 59.949,

of the fuzzy output value for input value z = 312 is smaller than its

center, 61.11. That is, the estimated fuzzy output Y; cannot be a fuzzy

number because the center point is larger than the right endpoint or

smaller than the left endpoint. The reason may be attributed to the
n

fact that the values of Z x; — Tn)(ly, — ly,,) and Z T — Tn)(Ty; — Tyn)

suggested by Condltlon A are -788 and -687, respectlvely, being smaller
than 0.

As in Example 2.3, there exists a problem that the estimated fuzzy
outputs do not satisfy the assumption for the fuzzy regression model.
So, in this case we have to introduce new method to construct the fuzzy
regression model.
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3. Censored fuzzy regression model

As identified in Section 2, in order to estimate fuzzy regression coef-
ficients using the least squares method that play an important role in
the regression model, certain conditions must be satisfied. Therefore,
new methods are required to be studied to estimate the data that are
not able to satisfy the sufficient condition suggested in the previous sec-
tion with the fuzzy regression model. In the fuzzy regression model, the
center point of the estimated fuzzy output must be larger than the left
endpoint and smaller than the right endpoint. That is to say, the right
endpoint of the estimated fuzzy output must be at least larger than the
center of the estimated fuzzy output but the left endpoint of the esti-
mated fuzzy output may not be larger than the center of the estimated
fuzzy output. In order to employ this nature, we apply censored data
used in statistics to fuzzy regression analysis.

Tobin [17] applied the concept of censoring to regression analysis for
the first time, see Kmenta [9]. He inquired into the relations between
expenditure and income, recognized that expenditure in the home may
be more than zero, utilizing censored data to estimate the regression
model.

We call the fuzzy regression model using censored data a censored
fuzzy regression model and we consider a two-stage procedure to esti-
mate the fuzzy regression model using censored data, as follows:

Step 1. We use the objective functions to estimate the center of fuzzy
regression coefficient A; using the center of fuzzy numbers Y; and Ay +
Aqx;, as follows:

n
Zp(yi — ao — 617;) = min!,
=1

where p is a continuous function on R.

In particular, the estimators @; becomes the least square estimators
in case of p(z) = x? and when p(z) = |z|, it becomes the least absolute
deviation estimators.

Step II. We put lyin and v, as the least left and right spreads
among observed fuzzy outputs, respectively. We can obtain the right
and the left spreads of the predicted fuzzy output using the following
equation with the concept of censoring:

n 2
Z(T%’ — max {do + G12; + 7, o + 7o + (41 + rl)xi}> = min!

i=1
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and
n 2
Z(lyi — min {do +a1x; —lag+ 1o+ (a1 + ll)xi}) = min!
i=1
subject to
r>min{ry, —y1,...,7y, — Yo} and I >min{y; — Iy, ..., 90 — Iy, }.

If we suppose that [ > 0 and 7 > 0 in the above inequality, a case may
occur in which the center and endpoint of the estimated fuzzy output
may be nearly identical. So, we used the inequality to prevent the case
in which the right and the left spreads approximate zero and to use the
information of the given data.

Furthermore if the given data satisfy Condition A given in Section 2,
when we put ! and r suggested in Step II as 0 and 0, respectively, the
fuzzy regression model can be estimated by the same method as that of
the estimators made mention in Section 2.

In the following example we find the censored fuzzy regression model
for the case satisfying the sufficient condition for the fuzzy regression
model.

ExAMPLE 3.1. The following data is an example given by Tanaka et
al. [15], and the fuzzy regression model estimated using censored data
is as follows:

f () = 9.054+0.71z if z<2
"I 7054171 if x> 2,
Fo(@) = 4.45 + 1.71z,
and
filz) = 265+1.7lx if xz<4
B= 5.21+1.07zx if =>4,

where fr, fc, and fl denote the function for right endpoint, the function
for center point, and the function for left endpoint, respectively.

However, in the data presented in Table 3.1, Condition C and C5 are
positive number and Condition C3 and C4 are negative number. As the
data satisfy the conditions given in Theorem 2.1, the fuzzy regression
model can be estimated by putting [ = » = 0. Table 3.1 shows the result
estimated using Step I and Step II in case of [ =7 = 0.
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TABLE 3.1: Numerical data and the estimated outputs for Example 3.1

Independent Response Estimated
variable variable fuzzy output

1 (6.2, 8.0, 9.8) (4.46, 6.16, 9.76)

2 (4.2, 6.4, 8.6) (6.17, 7.87, 10.47)
3 (6.9, 9.5, 12.1) (7.88, 9.58, 12.18)
4 (10.9, 13.5, 16.1) (9.59, 11.29, 13.89)
5 (10.6, 13.0, 15.4) (10.58, 13, 15.6)

Example 3.1 implies that the censored fuzzy regression model extends
the fuzzy regression analysis given by many authors.

4. Numerical example

In order to use, in fuzzy regression analysis, the data in which inputs
are non-fuzzy numbers and outputs fuzzy numbers, certain conditions
must be satisfied. However, even in the case that the sufficient condi-
tion is not satisfied, the fuzzy regression model can be estimated using
censored data.

In this section, we first identify through the following example that
in the censored fuzzy regression model the center and end points of the
estimated fuzzy outputs do not cross at all and then compare two meth-
ods to estimate the center and end points of fuzzy regression coeflicients
with the least squares method and the least absolute deviation method.

ExAMPLE 4.1. The data on the left of Table 4.1 was introduced by
Chang et al. [3].

As in Example 2.3, it does not satisfy Condition A; and Aj, there
occurs the phenomenon that the center and end points of the estimated
fuzzy output cross each other in cases when the input is either 128 or
148. In order to solve the problem of crossing, the result estimated using
the censored fuzzy regression model is as follows:

i (@) = 78.27145 + 0.1535z if x <126
T 565.3673 4+ 0.3411x if x> 126,

fe(z) = 54.6672 4 0.3411z,
and
A 15.6144 +1.5675z if 2 < 25.2
filz) ={ 35.9349+0.7611z if 252<=z <315
49.1672 + 0.3411z if =z > 31.5.
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TABLE 4.1: Numerical data and the estimation errors for Example 4.1

Independent Response Errors in estimation
variable variable LS LAD
7.4 (39.3, 13.8, 28.7) 30.3125 31.0125
9.0 (40.5, 15.0, 31.5) 28.4118 29.1118
114 (50.8, 18.6, 31.2) 10.3179 11.0179
14.8 (59.7, 13.7, 18.3) 10.4149 9.7449
15.7 (56.0, 18.0, 26.0) 6.8647  7.5647
18.0 (70.5, 15.5, 13.5) 24.5294 23.8294
22.9 (66.8, 18.8, 19.2) 12.7459 12.0459
25.2 (66.3, 16.3, 23.7) 16.7136 16.0136
31.5 (78.0, 20.0, 8.0)  18.0930 17.3930
50.3 (80.0, 15.0, 8.0)  12.2070 11.5070
62.9 (87.3,12.0,0.7) 16.6322 15.9322
82.0 ( 86.0, 5.8,1.0) 10.9901 10.2901
90.0 (90.0, 8.0, 7.0) 12.3863 11.6863
110.0 (92.2, 2.5, 0.7) 5.9887  5.2887
126.0 (78.2,0.6,7.8) 44.9245 46.3245
131.0 (97.0, 2.0, 2.0) 3.1468  4.5468
152.0 (106.3, 1.8, 0.7) 4.4724  3.9092
Total error 269.151 267.219

Unlike the fuzzy regression model, we known that the left spread and
the right of the predicted censored fuzzy regression model are greater
than zero from Example 4.1.

On the other hand, the last two columns of Table 4.1 show the er-
rors obtained from using the Least Squares (LS) method and the Least
Absolute Deviation (LAD) estimation. We can see that due to the ab-
normal position of the center point of the given data, errors of the least
squares method are larger than those of the least absolute deviation
method. Thus, it is well justified to use the censored data method we
have developed newly.

5. Conclusion

In this paper several methods that estimate the fuzzy regression
model initiated by Tanaka et. al show the same results. And it carefully
considered the problem that the estimated fuzzy outputs in the fuzzy
regression model cross. In order to solve the problem of the crossing of
the estimated fuzzy outputs, the sufficient condition was suggested, and
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in case that the suggested sufficient condition cannot be satisfied, the
censored fuzzy regression model using censored data was suggested.

We verified that the fuzzy regression model with censored data was
an extension of the fuzzy regression model and identified the solution of
the problem of the crossing of the fuzzy outputs from which the censored
regression model was estimated.

If the data for fuzzy regression model is unable to satisfy linearity,
it is not appropriate to use the fuzzy regression model. Therefore, we
need to study methods of how to interpret fuzzy data given using a
segmented regression model or a semi-parametric regression that are
used in regression analysis.
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