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Fuzzy Preference Based Interactive Fuzzy Physical Programming
and Its Application in Multi-objective Optimization
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Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient
multi-objective optimization method, which retains the advantages of physical programming
while considering the fuzziness of the designer’s preferences. The fuzzy preference function is
introduced based on the model of linear physical programming, which is used to guide the

search for improved solutions by interactive decision analysis. The example of multi-objective

optimization design of the spindle of internal grinder demonstrates that the improved preference

conforms to the subjective desires of the designer.
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1. Introduction

Generally, product design has been taken as a
multi-objective problem and the decision-mak-
ing, and design process is actually an optimizing
process, considering multi-restricted conditions.
Multi-objective optimization has been research-
ed and applied widely. Some new algorithms for
multi-objective optimization appear, such as col-
laborative optimization (Tappeta et al., 1997;
Huang et al., 2005a), interactive multi-objective
optimization (Tappeta et al., 1997 ; Huang et al.,
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2005b), physical programming (Messac et al.,
1996 ; Huang et al., 2005¢c) and VEGA (Vector
Evaluated Genetic Algorithm) (Tappeta et al.,
2001). These algorithms have specific character-
istics, and have found applications in various
engineering practical problems.

Physical programming is an efficient multi-ob-
jective optimization method first developed by
Messac in 1995. It captures the designer’s pre-
ferences using a preference function, and places
the design process into a more flexible and natu-
ral framework. Physical programming provides
the means to reliably employ optimization with
minimal prior knowledge thereof. Once the de-
signer’s preferences are articulated, obtaining the
corresponding optimal design is a non-iterative
process.

Human participation is one of the important
resources to the fuzziness of engineering system
(Huang et al., 2004, 2005d). It is no doubt that
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the process of the designers’ recognition and in-
ference has fuzziness, which could result in the
fuzziness of his decision-making. While the pre-
ference function is the map from the designer’s
decision to the optimization model, it contains
fuzziness because of the shortage of information
and experience.

Through the man-machine interactive inter-
face, interactive decision-making enables the de-
signer to control the optimization process to some
extent, which can effectively improve the design
efficiency and design result, thus avoiding time
wasted in an errant direction during the design
process. '

2. Mathematical Model of Physical
Programming Based on Fuzzy
Preference Function

2.1 Physical programming (Tappeta et al.,
2000 ; Messac et al., 2001)

Physical programming is a new effective multi-
disciplinary optimization method, which reduces
the computational intensity of large problems and
places the design process into a more flexible and
natural framework (Messac, 1996). It has been
successfully applied to control, structure design,
interactive design, and robust design.

Within the physical programming procedure,
the engineer expresses objectives with respect to

each design metric using four different classes.’

Each class comprises two cases, hard and soft.
The preference functions take the form of a spline
segment that can be defined by its value and slope
at its left and right boundaries.

Usually, Genetic algorithms are used to solve
the model (Tian et al., 2002) : it can obtain the
global optimum even when local optima exist.

2.2 Model of fuzzy linear physical pro-_
gramming
In physical programming, the boundary of the
preference region is a constant of practical physi-
cal significance, the value of which is evaluated
by the designer. Because the precise value cannot
be given in most cases, this paper considers that
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Fig. 1 Class function regions for the generic i-th
objective

it is relatively closer to the designers’ intents for
the preference function, in which the boundary of
preference region is defined as a fuzzy number.
Linear physical programming is a simplified
form of physical programming. The soft class func-
tion is shown in Figure 1. The model of linear
physical programming (Messac et al., 1996} takes

the form :
i Nge 5
min J =22 (Wasds + wWhd) (1)
dis,dis, X i=1§=2
subject to

g—dE<tis—n ; dE20; @<t}
(for all 7 in class 1S, 3S 48,
=1, 2, -, Hsc, S=2, ", 5)



Fuzzy Preference Based Interactive Fuzzy Physical Programming and Its Application in Multi-objective Optimization 133

—dis <tis-p 5 ds =0 @<t
(for all 7 in class 28, 3S 48,
=1, 2, ©oy Wse, $=2, -, 5)

In the case of 1S, the boundary of the prefer-
ence region is represented by a fuzzy number set,
(th, th, th, th, th). The fuzzy preference ranges
are defined as follow :

Ideal range (@<th)
Desirable range ({H<g:<th)
Tolerable range (ih<g<th)
Undesirable range (#5<g:<th)
Highly Undesirable range (t}<g:<th)
Unacceptable rang (g:>¢)

From the characteristics of aggregate preference
functions, the length of the s—th range of the ¢-th
criterion is defined as

l‘:g:[ts_fﬁs—n ; l‘:'—zs.:f;—ﬁ(s—n ; (2<s<5) (2)
The magnitude of the slopes of the class function

of the generic 7-th criterion takes the form
wzs_zs/l‘us, Wis= ZS/tLS, (2<s<5) (3)

Then we define

WE=WE— Whs-n ; W=ivE— Wie-v; @)
wh=wn=0

Based on the description above, the final fuzzy
linear physical programming problem model takes
the following form

J=3% (@ada+Tbds) (9

d,s dtgx
subject to

—di Sﬁ(s—l) cdE >0 g sth
(for all 7 in class 1S, 38 48,

i:l’ 2, v, Mse, S=2, 000, 5)
—dis < {?(s—l) s dis 20 &< 15
(for all 7 in class 28, 3S 48,

=1, 2, ", fse, $=2, , 5)
3. Interactive Fuzzy Physical

Programming

Interactive fuzzy physical programming takes
into account the designer’s physical understand-
ing of the desired design outcomes by forming

Set preferences and forn

preference functions

Generate nitial Pareto design
using physical programming

Determine the final design
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Generate new candidate)
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Fig. 3 Determining the boundary of fuzzy preference
function

fuzzy preferences during the optimization process,
which enables the designer to control the opti-
mization process to some extent. The flow chart of
interactive decision-making is shown in Figure 2.

3.1 Fuzzy preference

As shown in Figure 3, suppose that the pre-
ference function of the 7-th objective belongs to
Class IS, the boundary, g, is defined as a normal
fuzzy number, §. Its membership function takes
the form

Hey, (gz'> :e_[gigwgﬂ ]z, 0x>0 (6)

where 8y is the fuzzy parameter of the £-th bound-
ary of -preference function, which can be defined
referring to the robust design method of confirm-
ing variation of design objective (Huang et al.,
2005f) .

3.2 Generate candidate solutions

A set of initial candidate solutions will be
generated by initializing a threshold A and a step
size. The threshold A is obtained by the method of
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fuzzy comprehensive evaluation (Huang et al,
2005f) . Theoretically, the step size is smaller with
the result that the final solution more reaches the
ideal solution, while the calculation process is
more complicated. The preference function will
change based on the changeable boundaries of
the preference region, but the objective functions
and constraints are unchangeable. Therefore, all
the new generated solutions belong to the set of
Pareto solutions.

Based on designers’ basic satisfaction to the ini-
tial candidate solution obtained by the normative
physical programming, the designer may want to
improve upon some objective functions at the
expense of certain other objective functions. This
is called the designer’s improving preferences. A
controllable region is given to confine the value
of the secondary objective. Through adjusting the
threshold and the controllable region to match
the improving preferences and controllable range,
the candidates are obtained.

3.3 Evaluation of the candidate solutions

The candidate designs are evaluated with a quali-
tative-quantitative analysis method (Huahg et al.,
2002). The qualitative analysis is performed by
evaluating the candidate solutions with the An-
alytic Hierarchy Process (AHP) (Huang et al.,
2005e}. The quantitative analysis is performed by
evaluating the candidate designs with a quantita-
tive criteria based on the preference functions of
all the objectives. Supposing that the evaluation
value determined with AHP is 7aup, the evalua-
tion values determined with quantitative analysis
are 71, 72, 73 and 74 These evaluation values are
combined into an evaluation vector

7’:(7’1, Yo, 73, V4, TAHP) (7)

Based on the specified weights vector correspond-
ing to all the evaluation criteria

W—:(W1, e, Ws, W, H)AHP) (8)

The final evaluation value of the candidate design

is

grade=W-7T (9)
4, Example

4.1 Problem definition

Model representation of the grinding wheel spin-
dle systems is the key problem in grinder design,
and represents the entire system performance. In
the static optimization design, the weight of the
spindle represents its structure characteristics and
working performance while bending deflection re-
presents its stiffness. In this paper, both the mini-
mum static bending deflection of the grinding
wheel spindle extension, B, and the minimum
weight of the entire spindle are selected as the
design objectives. As shown in Figure 4, the sta-
tic model of the grinding wheel spindle of the
M2120A NC internal grinder is considered (Hu
et al., 2004) . The values of dimensions are shown
in Table 1. % represents the stiffness coefficient
of the bearing, £ =1.14E7 N/m and k,=7.75E7
N/m. The external force on B is F’=577 N. The
values of initial design objectives and variables
are listed in Table 3.

The design vector is

x=(x1, %2, xs) = (la, b5, Ds) (10)
The weight of the spindle takes the form
7 .

6=122 1ot (i1)

The static bending deflection of the grinding wheel
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Fig. 4 The static model of the grinding wheel spin-
dle

Table 1 The values of dimensions of the spindle system (m)

D D Ds Ds Ds 4 L bk I3 bk
0.032 0.048 0.050 0.050 0.048 0.031 0.046 0.028&65 0.048 0.042
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spindle extension, B, takes the form

YB:F[3§Ia+3gIz {1+ f )+ é(aﬂ (12)

where a= l5/2+ le‘l‘ l7 and /= l3/2+ Z4+ 15/2. E
represents the elastic ratio. I, and I, are the
moment of inertia of ¢ and /, respectively.

The mathematical model of the multi-objective
optimization is formulated as follows:

min(f1(x), f2(x))

filx) =6 ="

G—h— 2D2

fz(x)=Ka=F[3g]a+”l%+k (1+1) 1L

i

?&-._.

S.1

0.300<x,;<0.400
0.020<x,<0.040
0.058<x3<0.070

4.2 Results and discussion

Both the objectives G and Y3 belong to Class-
1S design metrics. The designer’s initial prefer-
ences are listed in Table 2. MATLAB is used to
solve the optimization model formulated in equa-
tion (13).
using physical programming is shown in Table 3.

The initial Pareto design generated

We hope to improve upon the solution of the
bending deflection, while the loss of the weight
objective is considered. To simplify the optimiza-
tion process, only one boundary of the preference
region will be fuzzification, which will greatly
influence the final optimal solution. In this sec-

tion, the right boundary, in which the initial op-
timal solution of the bending deflection is located,
is defined as a normal fuzzy number. Assume that
822=0.14E-5. The membership function formu-
lated in equation (6) takes the form

ta, (@) =e” (14)

The threshold A is defined as 0.6 and the step
is defined as 0.05. 17 initial candidate solutions
are generated. The controllable region is regulat-
ed within £10% of the initial optimal solution.
“When the threshold A=0.75, the optimum solu-
tions are obtained, as shown in Table 3.
Compared to the initial design, it is obvious
that both the design objectives are improved sig-
nificantly. Considering the fuzzy factors of the
designers’ decision-making, the moderate devia-
tions of the design objectives between IFPP and
the normal physical programming are 4.3% and
6.0%, respectively. The relative proportions of
design objectives are visualized in Figure 5. The
values of the vertical axis present the boundaries
of preference function from Desirable range to
Unacceptable range, which are quantified in turn
as 1, 2, 3, 4, 5. As seen in Figure 3, the solution
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Fig. 5 Compare the initial optimum design and the
final optimum design

Table 2 The initial region limits of designer’s preferences

Class type gis gia &is &i2 L1
filx) 1-8 16.0 15.0 4.0 13.0 12.0
S (x) 1-S 2.5E-5 2.2E-5 2.05E-5 1.95E-5 1.85E-5

Table 3 The results of design variables and design objective functions

I [m] LIm] | Dilm G [ke] Ys [m]

The initial value 0.368 0.028 0.070 14.104 2.020E-5
PP 0.350 0.020 0.066 12.284 1.973E-5
IFPP 0.393 0.020 0.064 12.806 1.881E-5
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of bending deflection is improved from the toler-
able area to the desirable area, while the weight
objective is sacrificed to some extent, but still
within the desirable area. Numerical analysis in-
dicates that the applications of the fuzzy pre-
ference function can effectively control the opti-
mization direction and scale of optimization ob-
jectives and express the designer’s subjective in-
tention more exactly.

5. Conclusions

This paper develops a new multi-objective op-
timization method, IFPP. In TFPP, fuzzy prefer-
ence, introduced into physical programming, is
used for adjusting the search direction and area,
which matches the designers’ intents exactly. In-
teractive decision-making enables the designer to
control the optimization process to some extent,
which can effectively imprbve the design efficien-
cy and design result, thus avoiding time wasted in
errant directions during the design process. The
example illustrates that the proposed method can
capture the fuzziness of the designer’s preference
structures, and conforms more exactly to engi-
neering realities.
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