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Time Discretization of Nonlinear Systems with Variable
Time-Delayed Inputs using a Taylor Series Expansion
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This paper proposes a new method of discretization for nonlinear systems using a Taylor

series expansion and the zero-order hold assumption. The method is applied to sampled-data

representations of nonlinear systems with input time delays. The delayed input varies in time and
its amplitude is bounded. The maximum time-delayed input is assumed to be two sampling
periods. The mathematical expressions of the discretization method are presented and the ability
of the algorithm is tested using several examples. A computer simulation is used to demonstrate

that the proposed algorithm accurately discretizes nonlinear systems with variable time-delayed

inputs.
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1. Introduction

Time delays occur during information process-
ing and data transmission in many engineering
systems. With recent network improvements, many
systems have been developed that are controlled
via networks ; these often transfer data from a
remote site. The time delay that occurs while
transmitting data through the network is the most
important factor affecting the overall system per-
formance (Diop et al., 2001).

Time-delay systems cannot be solved in con-
tinuous—time space due to the infinite dimensions
created by the time delay. The same problem oc-
curs in linear time-invariant systems, which in-
troduce more complexities and difficulties. For
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this reason, many control methods developed for
finite-dimension systems have experienced diffi-
culties when applied to a time-delayed system di-
rectly. Therefore, new design methods to control
time-delayed systems precisely must be develop-
ed.

Many studies have attempted to solve time
delay problems. Luo and Chung (2002) proposed
a delay-dependent criterion that guaranteed the
asymptotic stability of a linear uncertain system
with a time delay. Nihtila et al.(1997) proposed a
design method that made use of a real-time delay
estimator for the input delay found in a single-
input single-output (SISO) system with finite di-
mensions by transferring the time delayed part of
the system to the transport system, which consist-
ed of a linear ‘partial differential equation. Cho
and Park (2004) proposed a new impedance con-
troller for bilateral teleoperations subjected to
time delays. In addition, Choi and Baek (2002)
applied time delay control (TDC) to single-axis
magnetic levitation systems.

Two methods are generally used for time-delay
systems. In the first method, the controller acts in
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continuous-time space based on a continuous-
time model. It is then transformed to a digital
controller (Im et al., 2000 ; Chen, 1984 ; Carcia-
Sanz et al., 2001 ; Hohmann et al, 2001). Al-
though this method has been used in many exist-
ing studies, the digital controller has many limi-
tations due to the infinite dimensions of a delayed
item in the time-delayed system. In the second
method, the digital controller design is based on a
discrete-time space model after transforming the
continuous~time model into discrete-time space.
Here, the digital controller is less restricted be-
cause the problem of the infinite dimensions of
the time-delayed item in discrete-time space is
avoided. Therefore, the second method is well
suited for discretizing time-delayed systems.

This paper proposes a discretization method
for nonlinear systems with a time-delayed input
using a well-known existing discretization algo-
rithm (Franklin et al:;, 1988 ; Vaccaro, 1995). A
Taylor series expansion is used for the variable
time delay (Isidori, 1989 ; Vidyasagar, 1978). Al-
though Park et al. (2004a, b) proposed a discreti-
zation method for systems with a constant time
delay using methods such as the scaling and squar-
ing technique, and this time discretization method
was also applied to nonlinear control systems
with delayed multi-inputs {Zhang and Chong,
2005), these studies did not consider variable time
delays. Difficulties are encountered when apply-
ing the results of these studies to an actual system
directly because the delayed input values tend to
vary with time in real systems.

The remainder of this paper is divided into the
following sections. Section 2 presents the existing
discretization method for nonlinear systems using
a Taylor series expansion. Section 3 derives a
discretization algorithm for a nonlinear system
with a variable time delay for cases where the
delay times change within two sampling periods.
Section 4 describes the scaling and squaring tech-
nique. Section 5 presents a computer simulation
of the algorithm proposed here. Finally, Section 6
summarizes the conclusions of this study and the
directions of future work.

2. Discretization of Nonlinear
Systems Using a Taylor Series
Expansion

2.1 Systems without a time-delay
Consider a typical nonlinear system expressed
by the state-space equation

dx (1)
dt

=f(x(®)) +u(t) g(x(t)) (1)

Assume that the solution to Eq. (1) is

x(f)=Ao+ A (t—1t)

+A2(t‘fk)2+A3(t“tk)3+"' (2)

Expanding Eq. (2) using a power series gives

K1) = At 25 (£~ 1) +3A5 (£ — 1) 2o
K (£) =2A5+3 245 (1 — 1) +4-3A,(t— 1) 2+
X7 (1) =3:2A5+4:32As(F—ty) +--oo

where the coefficients of Eq. (2) can be calculated
as follows for t=¢, in Eq. (3):
Aov=x(tn), A1=x" (L)

"(n) A= x"’m) (4)

A=

In the case £t —{,= T, the state value of {=1{, can
be obtained after substituting Eq. (4) into Eq.

(2):

x(t) =x (t) +x"(ts) (¢ — 1)

x” (tk) X" (t)

+ IS () 2 T ) e (s)
g 4,

After applying a Taylor series to Eq.(5), the
solution to Eq. (1) can be expressed using a uni-
formly convergent Taylor series (Park et al., 2004a,
b), and each coefficient can be obtained us.ing
the continous partial differential equation for the
right-hand side of Eq. (1),

T! d’x

[ dtt
1 A8, w(®) 5

x(B+1D)=x(k)+

(6)

M8 £M3

P
l

where x (k) gives the value of the state vector
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x for t=t,=FkT, and A" (x, u) is a recursively
determined function

AMNx, w)=Ff(x) +uglx)

Aty (x, ) :&(axx’ﬂ(f {x) —}—ug(x)) W)

with /=1, 2, 3, -~

The exact representation of Eq. (1) can be ob-
tained from an expression of the state vector as an
infinite series using the Taylor series expansion
presented in Eq. (6), which also can be written as
follows

x(B+1)=0r(x(k), ulk))

= () + 5 A e (), w(p) L

An approximated representation for Eq. (1) can
also be obtained using an order N Taylor series
of the state vector.

x(k+1)=0%(x(k), u(k))

l
=x (=5 A" k), uth) T
where the subscript T of @f .is the sampling
period of the sampled-data representation ob-
tained from the discretization and the superscript
N is the finite number of the series used in the
approximated equation.

Remark 1.
polynomial in the input variable z,

A (x, w) =ab? (x) +al? (x) u
+ b (x) w4+ a? (x) o

In view of representation (10), the series expan-

In general A (x, u) is an /" degree
(10)

sion (6) can be rewritten as
x(k+1) =0 (x(k), u(k)
=)+ 35 [u () 17l e ) T Y

=1m=0

The series expansion (6) (or (8) and (9)) can also
be expressed in operator form. Using the zero-
order hold (ZOH) assumption, a new discretiza-
tion approach can be naturally formulated within
the context of a Lie series theory for nonlinear

autonomous ordinary differential equations (ODEs).

The following definition is deemed essential.

Definition 1. Given f, an analytic vector field
on R" and /%, and an analytic scalar field on R”,

the Lie derivative of % with respect to f is defined
in local coordinates as

_oh oh
th(x>_axlfl+ +axn fn

In light of Definition I, the solution to the re-
cursive relation (7) may be represented in terms
of higher-order Lie derivatives as follows :

A x, u)=(Lst+uLg) (12)
where the sub‘script i=1, --, n denotes the ™ com-
ponent and L,= Zf( ) 8 -and Lg= Z]gz( ) 8

are Lie derlvatlve operators. This allows the se-
ries expansion (6) to be represented as a uniform-
ly convergent Lie series for the Exact Sampled-
Data Representation (ESDR),

=0, (x(k), ulk)
=x:(k )‘l'E(Lf‘l’uLg) el muoor 77 ;

(13)

and similarly for the Approximate Sampled-Data
Representation (ASDR)

xi(k+1) =0 (x (F), u(k)
v T (14)

=x; (k) + 2 (L4 uLg) % |ixon w7 i

=1

with =1, ---, #n.

2.2 Linear system with a time-delay

The previous section considered an algorithm
for a system without a time delay using a Taylor
series expansion. In this section, we discuss a
discretization method using a Taylor series for
a system with a time delay in the input. First,
consider a constant time delay in a linear system :

dx (¢)

Jf = Ax () +bu(t—D) (15)

where A and b are constant matrices of proper
order. Assume that the time interval (£, &)=
kT, (k+1) T) is the sampling interval and T
is the sampling period. If the input has a constant
value during the sampling period, i.e., the ZOH
assumption holds, the input can be denoted as

uty=u(kT)=u(k)

=constant for kT <t<kTH+T (16)
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In addition, the time delay is
D=qT+y (17

where D is an integer of ¢g&<{0, 1, 2, -} and a
real number of 0< y< T. The delayed input as-
sumed by the ZOH assumption and these expres-
sions is determined by

u(t~D)
:[u(kT—qT—T)Eu(k—q—l) it ET<t<kT+y (18)
ukT—qT)=ulk—q) fRT+y<t<kT+T

The state values for the arbitrary time interval of
I=[t, t;) and u=wu.=constant can be obtained
at t=1{, as follows:

x(ty) =exp(A(t,— 1)) x (&)
+uc/ttfexp(A(tf— 7)) bdr

i

(19)

The input values with time delays in the sampling
periods are determined according to the time
interval ; therefore, the state values for the time
period can be obtained by applying these values,

x(kT+y) =exp(Ay) 2 (£T)
kT+7 (20)

+ulk-g-1) [ "V explA(RT +y~1)) bde
dkT+ T =exp(A(T-7)x (kT H7)

Tulb-g) /::’emA(/m T—o)bde 2V

By substituting Eq. (20) into Eq. (21),
x(RT+T)=exp(A(T-7))x(kT+7)
+ulk—q) ‘LiT:Texp(A(kTﬁ- T-1))bdr
=exp(A(T—7))exp(Ar) x(kT)

AT4T 22
+u(k—q)/ exp{A(RT+T—1)) bdr (22)
kT+7Y
BT+
+exp(A(T—y))u(k—q—l)/” exp(A(KT+y—1)) bdr
= x(kT+T)=exp(AT) x(kT) +Nuk—q—1) + Lu{k—gq)
T -7
where ﬂ=/; exp(Ar) bdrand Fo=/0 exp (A7) bdr.
-7
Eq. (22) gives a sampled-data representation for
a continuous-time space system with a time delay
of D. By using Eq. (17), the values of the state
vector at (£+1) T can be calculated as a linear
combination between the values of the state vector
for £7 and the past values of the input variable

ufor (k—g—1)Tand (k—¢q) T.

2.3 Nonlinear system with a time-delay

This section considers a discretization algo-
rithm for a nonlinear system with a constant time-
delay. Assume a nonlinear system described by

B —f(e(0) +5(c(0) ult=D) (@3

If we apply the ZOH assumption to the above sys-
tem, the delayed values of the input can be de-
scribed over two different time intervals, as shown
in Eq. (18). Therefore, the state values for #7 +
7 can be obtained by applying the input values
of the time interval [T, kT +7),

x(ET+7)=0,(x(RT), ulk—g—1)) (24)

where @, can be derived directly using Eq. (8).
In the same manner, the values of the state vec-

tor for {£+1) T can be obtained by applying the

input values of the time interval [£ T+, (k+1) T),

x(BT+T)=0r(x(RT+7), ulk—q)) (25

The sampled-data representation of the nonlinear
system (23) can be obtained by using Eqs. (24)
and (25) as follows :

x(B+1)=02(x(k), u(b—g—1), ulk—¢q))

00, (0,6 (8), u(k—q—1)), u(k—g)) 2

If the finite series truncation order N is applied
to Eq. (26), the approximated sampled-data rep-
resentation is

x(k+1) =02 (x (), u(k—q—1), u(k—q)) (27)

Theorem 1. Let x° be an equilibrium point of
the original nonlinear continuous-time system
(1) that belongs to the continuous-time equilib-
rium manifold E°={xeR"*|Jucsk  f(x)+
g(x)u=0} and u=u" be the corresponding
equilibrium value of the input variable f(x°) +
g (%" #4°=0. Then, x° belongs to the discrete-time
equilibrium manifold E*={xER"| JuER :

@2 (x, u) =x} of the ESDR (or ASDR) obtain-
ed under the proposed Taylor-Lie discretization
method, with 2=’ being the corresponding equi-
librium value of the input variable @2 (x°, «" =
x° (or OFP(x°, u® =x").
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Proof. Note that the Taylor-Lie A! coefficient
defined recursively by Eq. (7) vanishes at (x°, 2°)
since the latter belongs to the equilibrium mani-
fold E¢, A (x° «°) =0 for all /&{1, 2, 3, ---}.
It can be easily deduced that @,(x°, %°) =x° and

OR(x°, #°) =01 (0, (x°, "), u°) =0, (2", 2°) =1°

Similar arguments apply to the @¥” map of the
ASDR. Therefore, x° belongs to the discrete-time
equilibrium manifold E£¢ of the ESDR or ASDR
for any finite truncation of order N.

Theorem 1 essentially states that equilibrium
properties are preserved under the proposed Tay-
lor-Lie discretization method. This is a very im-
portant property and an advantageous feature of
the proposed discretization method from a digital
controller synthesis point of view.

3. Discretization of a Nonlinear
System with a Variable
Time-delayed Input

3.1 A time delay smaller than the sampling
period
Consider the nonlinear system described by

dx (t)

g =S (0) +e(x () ult—D(1)) (28)

Assume that Eq. (28) will be discretized to obtain
a sampling period of T =/fy41— ¢, >0. The values
of the time delay for the £™ sampling period can
be expressed as

DkZQkT+ Ye (29)

where ¢,=0 and 0<y,<1 is a real number. When
the values of the delay are smaller than a single
sampling period, the time interval for the £ sam-
pling period can be divided into two different
sections, [T, kT +vs.) and [T+ 7w T+ T),
based on the point in time that the delay occurs.
This is because the maximum delayed input is
located within a single sampling period. In this
case, the values of y, become an important factor
in the calculation of the state values because they
can determine the delayed input values in the
sampling periods. Therefore, when a time delay
occurs in the £™ sampling period, the input values

applied to the system can be expressed according
to the interval '

u(t—Dw)=ulbk—qp—1), kT<t< (kT +7)

=ulb—qu), (bT+7y.) <t<kT+T) (30)

The discretization of the nonlinear system given
by Eq. (28) with an input represented by Eq. (30)
using a Taylor series expansion is as follows :

2 (BT 470 =x(kT)
+EAWT), ulk—g- 1) 2, G
ET<t(kT+7:)

2(kT+T)=x(kT+7)

+gAl<X(kT+7k), u<k_qk>><_T1_1yi (32)
(RT+7) <{<(RT+T)

Substituting Eq. (31) into Eq. (32) gives

x(kT+T)=x{kT+74) |
FEAUGGRT) + BA G T,

wlh=am 1) 1), ulh—q0) T2

(33)

Approximating Eq. (33) to order N,
x(kT+T)=x(kT+y)
N N
+§1Al((x(kT)+l=Z‘iA‘(x(kT),

ulh=ar=0) 18, g T2

(34)

Therefore, a nonlinear system with a variable time-
delayed input smaller than one sampling period
can be discretized in discrete-time space to order
N as shown in Eq. (34).

3.2 A time delay smaller than twice the
sampling period
Reconsider the nonlinear system given by Eq.
(28). In addition, assume that the time-delay for
the £™ sampling period is Dr=grT + yx, where
q.=0, 1, 2, -
real number. Moreover, assume that the delayed

is an integer and 0<7,<1 is a

values in the present and previous sampling per-
iods are already known. If the values of the
variable time-delay are larger than the sampling
scale, the input values will be beyond the sam-
pling periods and affect the next sampling period.
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As a result, a system that has a single input will
be applied over two inputs according to the mag-
nitude of the time delay. In this case, if the pre-
vious input before a given step is supplied after
the input of that step, the input of the previous
step will be neglected and only that of the present
step will affect the system. Therefore, if the values
of the variable time-delay are larger than one
sampling period, a verification of which input
affects the system for each sampling period is
required.

In this study, the factors for each time delay
are compared to solve this problem. The &' time
delay can be expressed as D,=gzT + ¥z, where
g represents multiple sampling periods and 7x
identifies the location of the time delay in the sam-
pling interval. It is possible to determine where
the time~delayed inputs are applied to the system
by checking the values of g.. If two inputs exist in
a single sampling interval, it is possible to verify
which input values are applied to the system by
comparing the values of y.. These processes are
illustrated in Fig. 1. If gz-1=0 and g.=0, the
time-delayed input for the £™ input is applied to
the £ period. Therefore, the input values in the
k™ period can be determined from

ut)=ulb—qgr—1), FT<t<kT+7.. (35)
u(t)=ulk—qw, kT +r<t<(k+1)T

When g,-1=0 and g.=1, the {(£—1)™ input
will affect the system because the £™ input cannot
affect the £™ period. The input values for this
period are shown in Fig. 2 and can be expressed

u(k-1)

> u(k)
e

KT D, (k+ DT

Fig. 1 Input values when g(k—1) =0 and g (%) =0

uk-1)

| |
i {

D,, kT &+ DT D,
Fig. 2 Input values when q{k—1) =0 and ¢ (k) =1

as
ulty=ulb—qu), kET<i<(E+1)T (36

When g,_1=1 and g.=0, there are two input
values in a single sampling interval. Therefore, it
is necessary to check which input affects the sys-
tem first. For the condition ¥,.1>7s, the (b—
1)™ input will be neglected because the £ input
is applied to the system before the (k—1)™ input
arrives. Therefore, the input values are as shown
in Fig. 3 and defined as

u(t) =ulb—qr—2), kFT<t<kT+7:
u(t)=ulbk—qn), kRT+y<t<(k+1)T

Conversely, for the condition of yx_1<7s, both
the (k—1)™ and the £ inputs affect the system.
Hence, the input values are as shown in Fig. 4
and defined as

u)=ulb—q—=2), FT<t<kT+ 74
ult)=ulb—qu—1), kT +71<t<kT+7. (38)
u(t)=ulb—qu), kT +7.<t<(k+1)T

Finally, when gz-1=1 and g.=1, the (£—1)"
input can only affect the &™ sampling period.
Therefore, the input values are as shown in Fig. 5

u(k-2)
S—— u(k) :
| I
I i
KT D, D, (k+DT

Input values when g(k—1) =1 and g (%) =0,
rk—1)=7(k)

Fig. 3

u(k-2) u(k-1) w(k)
——--—-————..’A &—_—‘—w"
| il il |
[ I
kT Dy, D, (k+1T

Fig. 4 Input values when g{k—1) =1 and ¢ (k) =0,

rk—1)<wr(k)

u(k-2) u(k-1)
__....._—_..—" -

| |

KT D, (k+ )T
Input values when g(k—1) =1 and ¢ (k) =1

Fig. 5
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and defined as
u(t):u(k_(]k—]), ET<t<kT+yr
ulty=ulbk—qw), kT +7yea<t<(k+01)T

By substituting the results into the Taylor series
expansion equation approximated to order N,
the discretization equation for a nonlinear system
with a variable time delay in which the values of
the time delay are less than twice the sampling
period can be obtained as follows. When gx-1=0
and ¢,=0, the values of the state vector can be
expressed as

RT3 =) + AT, ulb=au1))

K
KT <t<kT+7
2(kT+T)=x(kT+7) (40)
N W AT-w!
+§1A (x(RT+7), ulk 41:))"“—,

ET+n<t<(k+)T

When ¢.-1=0 and g.=1, the values of the state
vector are

x(kT+T)=x(kT)
+2A G RD), u<k—qk>><L;!“_>” (a1)
ET<t<(k+1)T
When gs_1=1 and ¢z=0 for Ys_1>7s,
KR+ ) =2(eT) + ZA G (KT), ulb-gi-2) 1k
FT<t<kT +
w(kT+T)=x(kT +74 (42)
+§)}A’<x(kT+yk), wlb—g) <TZ—!7k)”
FT47<t<{(k+1)T

For Yr-1 < Ve

HkT+ 1) =2 (T)+ BA'G T), ulb-gi=2)1 22

ET<t<kT+9a
2kT+7) =2 (kT +7:m)

+§“1Al(x(kT+7k—1), u(k‘(h—l))w

I (43)
ET+1a2t<kT+7:
t(RT+T)=x (kT 4y

N RY
FRAT 4, kg T
RT+n<t< (k1) T

Finally, when gx—1=1 and g.=1,

1T +n-) =2 (kT)
+gA’(x(kT), u(k—qk—l))%lkTéKkTﬂk-l, (44)
FT+naSt<(kt ) T

4. Scaling and Squaring Technique

The Taylor series method can provide accurate
results. However, the order N must be very large
in order to achieve the desired accuracy if the
sampling interval T is also large. This is due to the
probability that when T is very large, AT/ /!
can become extremely large due to finite-preci-
sion arithmetic before it becomes small at higher
powers when convergence takes over. For a linear
system, this phenomenon occurs when calculating

e*’ and lTeﬂdt, which causes a computer over-
flow error. A ‘scaling and squaring’ technique,
which is also known as ‘extrapolation to the limit’
in the numerical analysis literature, can be ap-
plied to solve this type of problem. This technique
is commonly used to calculate the exponential
matrix exp(AT) for large sampling periods by
subdividing the sampling interval 7 into two or
more subintervals of equal length. An appropriate
positive integer 7 is chosen such that T/2" is
small enough to calculate the exponential matrix.
In our case, the sampling period T is subdivid-
ed into 2™ equally spaced subintervals of length
T/2™ over which the exponential matrix is cal-
culated. Squaring the matrix exp(AT/2™) m
times gives exp(AT):

exp(AT)=((<exp(A2l,,,>>2>“‘)Z (45)

The scaling and squaring technique can be ex-
tended to nonlinear cases by applying the Tay-
lor series method. When working on a particular
analogue, one can use nonlinear operators and
powers of operators as substitutes for matrices
and matrix products. Subsequently, the key idea
utilized in the nonlinear analogue of the scaling
and squaring technique remains the same as pre-
sented for the linear case. When T is sufficient-
ly large, one can divide the interval [ £, fes1) into
2™ equally spaced subintervals and use a small
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Taylor expansion of order N with a time step
of T/2™ for the 2™ intermediate subintervals
as a substitution for the larger order N’ used in
the single-step Taylor method case. Assume that
2(N’, T): R"— R" is the operator that corres-
ponds to the Taylor expansion of order N” with
a time step 7', and when it acts on x(£T), the
outcome is

x(BT+T)=Q2(N, T)x(kT) (46)

~ N . {
where Q(N, T) (*) :]+z—z‘iA[l] (x (&), u(k))?—,'
Using operator notation, the resulting discrete-
time system can be written as

T+ 1) =[2(N, 2]k @)

The above ASDR can be viewed as the direct
result of combining Taylor’s method and the
scaling and squaring technique.

The choice of parameters N and # is impor-
tant. Different values reflect different require-
ments of the discretization performance. The cri-
terion for selecting an appropriate m involves
comparing the magnitude of the sampling period
T with the fastest time constant 1/ of the origi-
nal continuous-time system. If 7 is small com-
pared to 2/p, we set m=0 and apply the single-
step Taylor series method. Since 7 is small, a
low-order N single-step Taylor discretization
method is usually sufficient to meet the expected
accuracy requirements. When T is larger than the
fastest time constant 1/p, we apply the scaling
and squaring discretization technique. The sam-
pling interval is then subdivided into 2™ subin-
tervals and a low-order N single-step Taylor
discretization method is applied to each subin-
terval. These subdivisions require that the fol-
lowing inequality hold :

T 2

2—,,,<? (48)
since the requirements for numerical convergence
and stability must also be met. The positive in-
teger m is assigned as

m=max ([log(5)|+1,0) . (49)

where @<2/p is chosen arbitrarily and [x] de-
notes the integer part of the number x. It is evi-
dent that smaller values of the arbitrarily selected
number # result in more stringent bounds on

T/2™
5. Computer Simulations

5.1 Simple chemical processing system

A typical continuous stirred tank reactor (CSTR)
system was simulated to verify the proposed algo-
rithm. The system equation can be expressed as

x' () =—x%(8) —3x()t) (50)

+u(t—D(t)) (1—x(8))

The initial condition is x(0) =0, and the input
and time-delay is applied using a sinusoidal wave.
This simulation consists of six cases in which the
period of the sinusoidal delay and the sampling
period are changed. In addition, this study assumes
that the results of the Taylor series method and
the MATLAB ODE solver are the exact values of
the system. It is possible to verify the validity of
using the MATLAB ODE solver results as a
reference from Park et al.(2004a, b).

Figure 6 shows the state values and relative
errors for the system in which the input is given
by u{t—D(¢t)) =0.9sin(((t—D(#))/4) and the
time delay is D(#)=0.04 sin(¢/4) +0.05 for a
sampling period of T=0.05s. As shown in the
figure, the maximum error of the state values did
not exceeded 1%. Figures 7 to 9 present the results
for the same input applied to systems where the

U35

- - ., e Matiab
@ DISH / Y, / N ;
kd A / A / % 7
I3 % £ Y / p /
N/ NS A
nosk N S A
% W 20 B3 40 S0 82 70 A0 ©0 00
time{sac)
(i3]
0,005 F
g o
§
0086
ooty 1 2 3 4 5 [ 7 B ) ]

!ime(eac)

Fig. 6 State errors and values of the CSTR ;
D(t) =0.04 sin(¢/4) +0.05, T =0.05s
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time delay is given by D(#)=0.04 sin(¢#/%n)+  were 0.0018, 0.0014, and 0.0009 for sampling per-
0.05, where n=8, 12, and 16, respectively. Figures iods 7=0.05, 0.01, and 0.005s, respectively; there-
10 and 11 give the state values and relative errors fore, the RMS value was decreased by the shorter
for systems with the same input and time delay  sampling periods. ‘
used in Figure 6, but with sampling periods of
T=0.01 and 0.005s, respectively. The RMS values 5.2 Second-order nonlinear system
This section presents a slightly more complex
second-order nonlinear system with a variable

( A = i time-delay. The system equation is
LS N PN B |
§ g B8 ;‘/ h 7 N 4 s
B ol AN N A =2 1—2*) —x(t) +ut-D(1)) (51)
sost \\ . < \\ L s
Ottt The initial conditions are x (0) =0.1 and x"(0) =

tismaged) . . _ . .
' 0, and the input and time-delay are applied using
U upes 1 a sinusoidal wave. In order to use the discretiza-
g o . tion Taylor series algorithm, the system is chang-
{ : .
o 1 ed to a state-space equation. If we assume the
LBy e 8 7 ¢ 8w . state of the system is
T st : . ‘
Fig. 7 State errors and values of the CSTR ; Xi=x, Xo=x" (52)
D(¢)=0.04 sin(¢/4) +0.05, T=0.05s
the state variables can be expressed as
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Fig. 8 State errors and values of the CSTR ;

) Fig. 10 State errors and values of the CSTR ;
D(t)=0.04 sin(¢/12) +0.05, T =0.05s

D(¢) =0.04 sin{¢/4) +0.05, T=0.01s
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X{=f1(X) +g1(X) u=2X, (53>
Xo=H(X)+eX)u=X(1-XD) - Xit+u

The same simulation used for the CSTR was
applied to the second-order nonlinear system.
Figures 12 and 13 show the results of the com-
puter simulation for a system in which the input
is given by u(t—D(¢#)) =sin(10({—D(¢#)) and
the time delay is D () =0.0009 sin(#) +0.001 for
a sampling period of T =0.001s. The figures show
that the state values in continuous-time space are
close to those in discrete-time space. In addition,
the errors of the state values between the two
different time domains are quite small. The RMS
value is 9.2093 X 107° for state Xi and 4.0962 X
1074 for state X.

The simulation results demonstrate that the
values of the state error decrease with the sam-
pling period of the system. If the sampling period
remains constant, the state errors decrease with
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Fig. 12 State values of the second-order nonlinear
system (7=0.001s)
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Fig. 13 State differences of the second-order non-
linear system (7°=0.001s)

smaller values of the time delay. This is because
the ZOH assumption was applied to the time-
delayed values in the simulation, i.e., some errors
arose when the values of the time delay did not
follow the sampling period in continuous-time
space exactly because the values of the variable
time-delay in discrete-time space were constant
over the sampling period and the values were
maintained at the point of time of the sampling.
In addition, the errors of the delayed values af-
fected the calculation of the state values, creating
state errors. Therefore, the performance of the
discretization algorithms for variable time-delay
values in a nonlinear system is very important.

5.3 Scaling and squaring technique

In this section, we show that the scaling and
squaring technique gives more precise discretiza-
tion results when the sampling period of the sys-
tem is large. Consider a nonlinear CSTR system
as follows :

x'(t) =—x(¢) —3x(;‘) (s4)

tu(t—=D(t)) (1—x(t))

The sampling period is 7 =2.0s. According to
Park et al. (2004a), an ideal sampling period for a
CSTR is less than 0.6s, so this presents a suitable
problem to verify the performance of the scaling
and squaring technique. Figure 14 shows the
results of the discretization using the scaling and
squaring technique. The maximum error is less
than 107, indicating the usefulness of the tech-
nique when a system has a large sampling period.
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Fig. 14 Results obtained using the scaling and
squaring technique
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6. Conclusions

This paper proposed a discretization method
that used a Taylor series expansion for nonlinear
systems with variable time-delay inputs. Compu-
ter simulations with various examples were used
to verify the proposed algorithm. The time-delay
was typically restricted to less than twice the sam-
pling period for each simulation, and the zero-
order hold assumption was applied in the discre-
tization of the variable time-delay for each sam-
pling period. The results showed that the values
of the state error decreased with smaller system
sampling periods. When the sampling period was
held constant, the state errors decreased with
smaller time delay values. The maximum state
errors did not exceed 1% for state values in con-
tinuous-time space, and the errors were approxi-
mately 0.01% of those obtained for a system with
more appropriate sampling period and time delay
values. The results demonstrated that the discre-
tization algorithms proposed here produced satis-
factory results, as verified by the RMS values of
the state error for different cases. In the future, we
plan to apply the first-order hold assumption to
variable time delay values to reduce the maximum
state error.
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