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Classical finite element programs are not well suited to the design of composite structures,

_because they are primarily analysis tools and need much time for the data input and as well as

for the interpretation of the results. The aim of this paper is to develop a program which allows
very fast analyses and reanalyses for design process, thanks to a fast reanalysis method with
changes of data and conditions.-Speed in the analysis is obtained by simplification of the an-
alysed structure and limitations in its geometrical generality and improvements in numerical

methods. The use of the program is made easy with interactive user—friendly facilities.
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1. Introduction

The laminated and sandwich panels are often
employed for aeronautic, automotive, civil engi-
neering purposes. These panels are essentially com-
posed of several material layers of varying thick-
ness glued together. For example, in sandwich
panels, while the material properties of the core
generally provide the indispensable thermal in-
sulation and low overall density, skin materials,
according to their constitution, provide resistance
to shock, inclemency, fire or simply an aesthetic
effect. However, the elastic calculation of laminat-
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ed and sandwich panels with the traditional the-
ories of multilayer plates, shear or elasticity, re-
main complex as their formulation lead to a sys-
tem of one or several differential equations.

Nowadays, the finite element method is frequent-
ly used to solve these equations and operates as
a basic tool for the analysis process of structures.
However, it may require a long and complex pro-
cess, even for classical structures. For composite
structures, the difficulties of finding pertinent and
simple models for the material behaviour make
finite element analysis even more difficult. Many
general computation codes, such like NASTRAN,
SAP or ANSYS, have been developed for indus-
trial uses, mainly in the area of solid mechanics.
These codes require intensive use of a computer
and, consequently, often run on mainframes.

A review of existing programs for the design of
composite structures shows that, generally, they
are only analysis tools with no design facilities or
efficient user-interface for data input or results in-
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terpretation. In structural design or optimisation,
the procedures are generally iterative and require
repeated analysis as the structure is progressively
modified. In addition, the design of composite struc-
tures needs efficient facilities in order to overcome
penalties such as heavy input data, long computa-
tional, output time due to the material properties
and the multilayer structure. The inclusion of a
finite element program in an optimisation process
is frequently proposed as a way for design. In our
opinion, this is generally impractical.

Recent reanalysis methods joined with an in-
teractive user interface appear as one of the most
realistic solutions to satisfy the designers of com-
posite structures by countering the above draw-
backs of classical finite element programs. As
stated by Kane et al.(1990), the term reanalysis
denotes any technique that allows for the subse-
quent analysis of a modified problem with less
expenditure of computational resources than re-
quired to compute the response of the original
problem. Generally, some information computed
in the analysis of the original problem is reused in
the analysis of the modified problem. Changes for
design process can be graded in order of increas-
ing difficulty as : applied forces, boundary condi-
tions, material properties, geometry.

The use of reanalysis methods for the design of
composite structures has been investigated in this
paper. The present development illustrates an ori-
ginal reanalysis method for modification of ap-
plied forces and boundary conditions. To provide
a piece of reference software on laminated and
sandwich plate design in the same manner as the
reference book of Timoshenko and Woinowsky-
Krieger (1981) for homogeneous and isotropic
plates, a specific program FEAD-LASP was de-
veloped. FEAD-LASP (Finite Element Aided
Design for Laminated And Sandwich Plates) uses
the original direct reanalysis method and provides
a user friendly interface for the design of compo-
site plates.

2. General Theories of Laminated
and Sandwich Plates

Bibliographical research reveals three main the-

ories for the study, in the elastic area of trans-
versely loaded muitilayer plates : 1) the tradition-
al theory of thin orthotropic plates, 2) the plate
theory with shear effects, 3) the theory of elas-
ticity (in the case where a solution exists) .

The adaptation of the classical isotropic plate
theory to anisotropic materials is due to the work
of Lekhnitskii (1963). The initially multilayer
plate is replaced by an equivalent single ply mo-
del, based on the substitution of the real cons-
titutive material by a fictitious equivalent materi-
al, the properties of which are determined from
the laminated or sandwich properties. Displace-
ments and deformations then obtained translate
the average behaviour of a plate that becomes ar-
tificially homogeneous across its thickness. Only
stresses require a ply by ply calculation. This theory
is based essentially on two hypotheses : 1) normal
planes remains normal to the neutral axis after
application of loads, 2) displacements correspond
only to the existence of bending moments.

This second method can be considered as a
generalization of the previous theory. Some of the
hypotheses assumed for thin plates can be preserv-
ed {0z stress negligible through the thickness h,
external and internal linearity, only transverse load-
ings). The effects of shear stresses are no longer
neglected and generally, a parabolic law charac-
terises the variation of the shear stress through the
thickness. This theory, interesting and relatively
simple in its literal application, nevertheless intro-
duces some difficulties into the research of per-
tinent mathematical solutions. Finally, the reso-
lution of plates non symmetric with respect to
mid-plane appears rapidly inextricable with the
increase in the number of layers.

The solution of the problem of the elasticity,
in stress or displacement formulation, has been
developed by Pagano (1970) in the case of multi-

L

Fig. 1 Boundary conditions
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layer plates. This theory has the advantage of
providing exact theoretical results, without sim-
plifying hypotheses as in the two previous theo-
ries. Although its major disadvantage is that it is
not universal, it constitutes an applicable element
of choice as compared to the other methods of
calculation.

2.1 Comparison of “thin plate theory” and
“theory of elasticity” using a sandwich
panel under normal uniform pressure

The study focuses on a sandwich plate in cy-

lindrical flexion. The input data, used to obtain
the results, were the following :

Skins : thickness=h=33 mm, orthotropic materi-
al : Polyester resin and glass fibres

Ex=Ey=5280 MPa Gx=1955MPa yyy=1yx=0.35
E,=3970 MPa Gy,=Gux=1320MPa y,y=1y,=04I.

Core : thickness=120.4 mm, isotropic material :
Polyurethane foam

E=5MPa y=0.22.

Normal uniform pressure : g=0.1 MPa

2.2 Calculation of the maximum bending de-
flection
For a ratio S=L/h=4, the values of the maxi-
mum bending deflection at the centre of the plate
are :

- classical thin plate theory : Wnax=0.57 mm ;

- theory of elasticity : Wmax=13.21 mm.

The gap between the two values is very large.
Even for thinner sandwiches, this difference re-
mains considerable.

2.3 Remarks

The classic theory appears, from the previous
example, to be inefficient, especially for the cal-
culation of bending deflections. The inability to
translate the global behaviour of a sandwich panel
is essentially due to the fact that the shear force
has not been taken into account. The results pro-
vided by theory of the elasticity show that the shear
force cannot be neglected in sandwich plates. How-
ever, the shear effects leads to the corresponding
equations which becomes even more difficult. The

use of the finite element method provides a solu-
tion to draw back this difficulty.

3. Finite Element Method and
Reanalysis Method

3.1 Finite element method

The finite element method is today sufficiently
well known (Zienkiewicz, 1971). The principle of
the method is to replace a continuous structure
by a discrete model (meshing process) composed
of many structural elements of finite dimensions,
called finite elements. These elements are con-
nected to each other by a finite number of nodal
points (or nodes). At these nodes, a certain num-
ber of displacement and possibly rotations re-
presenting degrees of freedom are defined. The
resolution of the problem consists to determinate
at all nodes either displacements or forces (dis-
placement or stress formulation). The displacem-
ent method, described here, is based on the as-
sumption that displacements in any finite element
depend only on the nodal displacements of the
element. The application of the minimum poten-
tial energy theorem on each element and the
assembly of all elements result in a linear system
of equations of the form:

Ku=f (1)

where K is the stiffness matrix of the structure, u
and f respectively the nodal displacement and
total force vectors. From a mathematical point of
view, the finite element method transforms the in-
tegral formulation of the equilibrium of the con-
tinuous structure into a set of discrete algebraic
equations. That is especially the properties of the
element that is necessary to define with care, in
particular for composite structures. A solution for
obtaining an efficient simple finite element for the
analysis of laminated and sandwich structures led
to the equivalent material model.

In order to obtain a simple and efficient finite
element model for analysis of laminate and sand-
wich structures El Shaikh (1980) developed the
equivalent material model, based on the substi-
tution of real constitutive material by a fictitious
equivalent material. The properties of the equiva-
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lent material are determined from laminate or sand-
wich properties. While this process allows use of
the classical three-dimensional finite element in a
slightly modified form, it avoids construction of
special finite elements for the Mindlin-type lami-
nated or sandwich plates and shells. Using elastic
stiffness, which varies parabolically along the thick-
ness, the modified three-dimensional element can
reproduce exactly the behaviour of any of these
structures, including coupling and shear effects.
The fundamental result is that, with a convenient
choice of material constants, a complete similarity
between the Mindlin-type equations and some of
the finite element equations can be achieved.

The theoretical analysis for the equivalent ma-
terial model is easily implemented in finite ele-
ment programs possessing a numerical integration
and three-dimensional finite elements with vari-
able numbers of nodes. It has been used with iso-
parametric Serendip elements. In the thickness,
the three-point Gauss—Legendre integration was
selected to take into account the variation of the
material properties, and the classical rules of nu-
merical integration were used in the two other
directions.

It has been seen that the present method and
numerical results are generally in excellent agree-
ment, while reasonable agreement is found with
the experimental results. It can be concluded then
that this process casily converts a classical three-
dimensional finite element program into an effi-
cient laminated or sandwich program, using an
equivalent material.

3.2 Comparison of “finite element method”
with “theory of elasticity” using a sand-
wich panel under normal uniform pres-
sure

We process here the same example already pre-

sented above. The following results were obtain-
ed:

S=4 and g=1E"!'MPa:
- theory of elasticity :
Wmax=—13.21 mm ;
- finite element method :
Wmax=14.08 mm (ANSYS).

S=30 and g=1E*MPa:
- theory of elasticity :
Wmax—25.1 mm ;
- finite element method :
Wmax=25.3 mm (ANSYS).

For S=4 a largest error (7%) is generally ob-
served on the bending deflection. This is due to
the fact that for S<15, the exact shear stress dis-
tribution given by the theory of elasticity differs
slightly from that imposed on the finite element
method. The shear energy is then underestimated
and the finite element method leads to an over-
estimation of the bending deflection of the struc-
ture.

3.3 Reanalysis Method

The design and optimisation of structures gen-
erally require iterative procedures and repeated
analysis as the structure is progressively modified.
In order to avoid the completely same analysis
process at each iteration, many reanalysis tech-
niques have been devised. Several of these tech-
niques were reviewed by Arora (1976) in 1976.

The reanalysis methods are broadly classified
as either direct (i.e. exact) or iterative in terms of
solution process. These methods are formulated
by using the force (or flexibility) variables, dis-
placement (or stiffness) variables, or mixed vari-
ables. The direct methods give exact and closed-
form solutions that have the same effect as solving
the newly modified system of equations. General-
ly, the direct methods are efficient if the number
of elements to modify is small. The reanalysis
method presented hereafter is direct and formu-
lated by using the displacement variables.

The reanalysis method initially proposed by
Verchery (1990) permits to a reanalysis for sim-
ultaneous changes in kinematic constraints and
applied forces, and gets a substantial gain in com-
putation time. These kinematic constraints include
boundary conditions, symmetry conditions, inex-
tensibility or incompressibility constraints. The
principle of this method is based on the fact that

" rigid body motions cause the singularities of the

classical equilibrium system of discrete elastic
structures. Therefore, a general solution can be
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expressed prior to any assignment of displacement
boundary conditions. The solution for specified
load and boundary conditions can then be deter-
mined by solving an associated small-size linear
system. The theoretical method and its numerical
evaluation are outlined hereafter.

In the traditional analysis method, the equation
for the classical equilibrium system of discrete
elastic structures is expressed as in Equation (1)
above. This equation can only be solved by in-
troducing the boundary conditions. Further, when
the boundary conditions are changed, the entire
process must start again from the beginning, solv-
ing frequently a very large linear system. This pro-
cess is very time consuming. In order to reduce the
computation time of classical analysis the follow-
ing reanalysis process has been developed. The
reanalysis process is decomposed in two steps. A
first step is the computation of the flexibility
matrix S, which is a quasi-inverse of the stiffness
matrix :

SK=KS=I—RR" (2)

This flexibility matrix is obtained through a re-
gularization process, described theoretically by
Verchery and numerically by Loredo (1993).
Here R is the # X » matrix, the columns of which
are the eigenvectors, chosen to be orthonormal,
for the zero eigenvalues of the stiffness and flexi-
bility matrices K and S.

While this first step is general, the second step
introduces all the data relevant to the kinematic
constraints and loading conditions. The kinema-
tic constraints (including the boundary condi-
tions) are assumed to be independent and linear :

LTu=§ (3)

in which L is a pX» matrix with rank p, and &
are p prescribed values. These kinematic con-
straints develop reactive forces f, expressible in
terms of p reaction parameters ¢ :

The total forces f are the sum of these reaction
forces and the given forces fi. The solution for
the displacement # can be expressed in the full

form :
u=S(f,—L¢) +Rw (5)

The rigid body motions @ and reaction para-
meters ¢ are obtained for a discriminant system :

[-LTSL LTS:|{¢}{5_LTS][¢1}

L o |lo/l R7% (6)

The order p+# of this discriminant system is
much less than the original system (Equation 1),
especially for problems with large degrees of free-
dom and small number of constraints. An advan-
tage of this reanalysis method is that it can be
applied to local changes in material and geomet-
rical properties (Huang and Verchery, 1992).
With this method, the reanalysis under various
boundary conditions is made easier. This can be
applied to aid design, which requires fast rean-
alysis processes for full efficiency or to simplify
the solutions for contact and elastic crack pro-
pagation problems, which otherwise require long
iteration methods. It can also be useful for sub-
structuring large or repetitive structures.

We introduce here the “active degrees of free-
dom” and “definitive degrees of freedom™ con-
cepts that allow the previously described method
to be faster again. Their principles consist of a
reduction of the matrix computation by reducing
the degrees of freedom (D.O.F.) and rigid body
motions parameters to a minimal set completely
determined by the studied structure. Sufficient
information is kept to permit the solution.

An “active degree of freedom” represents any
degree of freedom that receives either a kinematic
or a loading constraint. The necessary number of
degrees of freedom to solve the discriminant sys-
tem for a particular study is equal to the active
degrees of freedom. This number is inferior to the
number (#) of the initial set. Most of the matrices
belonging to the discriminant system can be “con-
tracted”, without loss of information. The discri-
minant system becomes :

[—17517 ETI?]{gé}:{a—ETS‘ﬁ} )
R'L o |lo R'f4

with L=H'L, S=H"SH, R=H'R, f=H"f..
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H represents here the # X g contracting matrix
with a< #n.

The S matrix shows that only the correspond-
ing rows or columns of the compliance matrix .S
have to be computed in the regularization process.
This variant of the reanalysis method is very
helpful at significantly reducing the computation
time of the two steps of the reanalysis process.

A designer méy eventually decide that some
kinematic constraints, that correspond to a sym-
metry of the problem for example, remain con-
stant during the full design process. The corre-
sponding degrees of freedom then become “de-
that is to say that the corresponding
rows or columns that they represent in the ma-
trices will not be computed but eliminated in the
same manner as in the classical way. The sizes of
the initial matrices B, K and S will decrease and
perhaps the matrix R of the rigid body motions
may disappear completely. The gain in computa-
tion time for this method is then very large, but,

33

finitive,

no more changes can be made within the set of
these “definitive” kinematic constraints.

In order to evaluate the performance of the pro-
posed reanalysis methods the numerical opera-
tions were counted. An operation is defined as
a multiplication plus an addition, and only the
major sequences of operation are counted. These
are only approximate comparisons because the
integer arithmetic for address computations may
vary among different algorithms. In some cases
these operations may consume a substantial por-
tion of the total computation time. The number of
operations required for initial formulation of the
global stiffness matrix, K, has not been calculat-
ed as it is beyond the scope of this paper. The
following study compares only the computation
times for the two steps of the reanalysis method,
the regularization process and the resolution of
the discriminant system. A personal computer with
a 387 arithmetic coprocessor and a 33 MHz clock
was employed for evaluation of the corresponding
time measurements.

The number of the currently elementary opera-
tions, that corresponds to the regularization pro-
cess for the FEAD-LASP program (=390 D.O.
F.), reaches approximately 28 million. This num-

. ber corresponds to a 7 minute duration and an

0(#%/2) complexity for the algorithm.

For the 16-node Serendip, thick plate finite
element employed in the FEAD-LASP program,
with 3 degrees of freedom per node, the “in place”
matrix inversion algorithm, used in FEAD-LASP,
proves to be faster than the Loredo algorithm
(Loredo, 1993), usually employed at this step,
particularly when the size of the problem does not
exceed 600 degrees of freedom (Fig. 2). The gain
is approximately 5 million operations or [.25
minutes. The main reasons for the gain are as
follows. The algorithm of Loredo is principally
based on the band shape of the K stiffness ma-
trix, but does not consider the symmetry of the
matrices. The algorithm used in FEAD-LASP
does account for the symmetry of the matrices.
For square symmetric matrices the savings in
numerical operations may be significant. If the
band width variation within the body of the stiff-
ness matrix is taken into account, the number of
operations is reduced. Above the limit of 600
D.O.F., the algorithm of Loredo works faster be-
cause of its O (2#°b+nb? complexity, where b
represents the half-band width of the K stiffness
matrix of the structure. The effects of the “active”
and “definitive” D.O.F. are not included in this
comparison. We have considered that all D.O.F.
were “active” and none were “definitive”.

Using the 16 node Serendip element, the differ-
ence between the number of elementary opera-
tions needed by the two resolution processes can
be evaluated by the following expression :

B -+ Elementary opemuon
nrber {3 109

Elerent number

A by side

e

3 B
Fig. 2 Comparison between the algorithm of FEAD-
LASP and Loredo (until 390 D.O.F.)



788 Jun-Bin Ko, Kee-Seok Lee and Sang-Jin Kim

Difference=124 -+ 5T9pm—T636~1572m + 1496
1 g , ®
+12798m:°+2916 4—€p3+144pm2—§p2
where p represents the kinematic constraints and
m the number of finite elements along the edge of
a square plate. Fig. 3 shows the favourable and
unfavourable zones for this method as compared
to the classical method. Notice that the favourable
zone corresponds mainly to a weak number of
kinematic constraints compared to the total num-
ber of degrees of freedom. The maximal computa-
tion gain, compared to the classic method, can
reach two minutes for m=6 (800 D.O.F.) and
p<200,' with a calculation time of only 30 se-
conds for a reanalysis. The effects of the “active”
and “definitive” D.O.F. are not included in this
comparison.

3.4 Remarks

Several micro-computers and work-stations were
used for the numerical part of this study. It was
found that personal computers as well as low cost
work-stations were well suited for a fast numeri-
cal treatment, i.e. only a few minutes for the first
analysis, and reanalysis in seconds. Moreover, it
was seen that, even in the case of very low-cost
micro-computers, the total time was reasonable in
a design process. The numerical accuracy of the
results agrees with other finite element codes and

p: mwanber of imposed kinematic conditions

180 204 380 400 500 533

Unfavorable zone
diff<0

m: etesnent number by side

Favourable and unfavourable zones for the
FEAD-LASP reanalysis method compared
to the classical method (for the iterative pro-
cess)

the software as already demonstrated (Eyraud et
al., 1995).

4. Validation of FEAD-LASP
Program

4.1 General description of FEAD-LASP
program

To evaluate the proposed efficient and general
reanalysis methods, which are not based on mul-
tiple automatic optimisations used in any uni-
versal finite element program but entirely piloted
by the user, a specific finite element program was
created, called FEAD-LASP (Finite Element Aid-
ed Design of Laminated And Sandwich Plates).
Developed for laminated and sandwich plates,
this program permits both analysis and design
of composite plates in linear elasticity. The struc-
ture of FEAD-LASP is schematised in Fig. 4,

Geometry >

Maerials g~

Assembly process => {K}

Regularization
process

‘r Flexibility matrix => {8}

Y

Boundary R X ¢
conditions Discrininant linear system
Basic solutions

&, w)

!

Applied i
fgrg;ex L Resolution process =>u

Fig. 4 General description of FEAD-LASP soft-
ware
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in which kinematic constraints are limited to
boundary conditions.

The main objectives of this program were: 1)
to obtain good compromise between the com-
putation time and the treatment capacities of the
program, 2) to significantly decrease of the com-
putation time in order to reduce the waiting time
of the users, 3) to provide a fully interactive pack-
age, in the sense of being self-explanatory and
user—friendly. This resulting software consists of
a Multiple Documents Interface (MDI) whose
menu is centred around three main sections: in-
put of data, resolution and results exploitation
(Fig. 5).

The data input begins with the geometrical de-
finition of the structure. Rectangular composite
and sandwich panels (in bending and in-plane
deformations) with pre-defined regular meshes
are employed, covering a wide field of practical
needs. Three new menu items are then proposed
to the direct or ply by ply laminate {or sandwich)
definition. Appropriate and evolutive data bases
are available for this task (Fig. 6). We selected
a generalization stress-strain law, which describes
efficiently the behaviour of both laminated plates
with shear effects and sandwich plates. It takes
into account all the specific features of these struc-
tures based on the extended laminated plate theo-
ry.

Using the normalised stiffness (Tsai and Hahn,
1980), the generalized stress-strain law is written

as :
* hz *
N1 | AT B 0 |
M =1 pe B K (9)
o| |TB D 0
0 0 AG*

where N, M and @ are the in-plane forces, bend-
ing moments and shear forces; £°, « and, y are
the membrane strains, curvatures and shearing
strains ; A*, B*, D* and G* are the normalised
in—-plane, coupling, bending and shear stiffness.
As we proceed with global stiffness, the definition
problem of the stacking sequence may be treated
separately (Verchery, 1990 ; Kandil and Verchery,
1989).

aal
T (2 00080
2L dl 2. 500683

ware

; 5 S
7.692£ 04142 308E 40440
7.682E +U4 ) «0.000E+00

+7.692E+04 1 +0.000E 00

Fig. 6 - Dialog box with a data base for the genera-
lized stress-strain law used in FEAD-LASP
software

A method for the calculation of the generalized
shear stiffness, which does not require the so—
called shear correction factors, has also been in-
corporated, for both sandwich and laminated
plates (Cheikh Saad Bouh, 1992; Pham Dang
and Verchery, 1978). Boundary conditions are
pre-defined for the standard cases (clamped and
simply supported plates), but could be customis-
ed for particular cases. Uniform pressures, punc-
tual loadings and natural weight, corresponding
to the applied forces, can be customised as well.
The menu “solver” launches the first analysis and
the possible ulterior reanalyses. The resolution is
based on the reanalysis method previously de-
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scribed. With this method, reanalyses under vari-
ous boundary conditions and loadings are made
easier and quicker. Two graphic post-treatments
are dedicated to the results exploitation. The first
one allows the 3D visualisation of the deformed
structure and gives nodal information (displace-
ments, reaction forces, strains and stresses). The
second draws the displacement, strain and stress
isovalues on the plate.

In view of the features currently provided by
system environments such as Macintosh or Micro-
soft Windows, an interface adapted to the re-
search field was designed, presenting similar fa-
cilities. This interface is user-friendly through the
use of windows, icons, pop—up menus and dialog
boxes technique. An in-line hypertext help is
provided, as well, to assist users who have little
or no knowledge of the internal structure and
methods of the program. The quasi-multitasks
environment was, as much as possible, employed
to keep the dialog between the software and the
user and permit a communication with others
codes. Tt thus becomes possible to quasi-simulta-
neously compute an analysis and visualise results
of the previous one. The interactivity of the sol-
ver is principally obtained through the use of the
reanalysis method and various specific routines
developed to reduce the computation time.

4.2 Implementation of FEAD-LASP

program

The FEAD-LASP program uses a 16-node thick
plate finite element for analysis. It is based on a
kinematic and material similarity between laminat-
ed and sandwich structures and the three dimen-
sional finite element with two nodes in the thick-
ness and a fictitious equivalent material with pro-
perties varying along the thickness. This process
applied to the finite element method allows use of
the classical finite elements in a slightly modi-
fied form and avoids resorting to special finite
elements.

During the program development, a dimension-
al analysis, based on the fact that a regular mesh
was used, showed that only about 10% of the
global matrix coefficients in a non-dimensional
form are needed to generate the global matrix.

Consequently, these quantities were computed
and stored as data in the program. These data are
common to all types of plates, so the assembly
process is reduced to the multiplication of differ-
ent data blocks by dimensional and materials
properties. The analysis computational time (as-
sembly process and solving) was compared with a
classical finite element program. This comparison
showed the high efficiency of the FEAD-LASP
program compared with the method used in the
classical finite element program. The FEAD-
LASP program is written in C/C++ object ori-
ented language to better manage the computer
system facilities. Dynamic memory allocation and
resources files have been employed to manage the
memory capacity in an optimal manner and per-
mit the translation of the program into various
foreign languages. To run the program satisfact-
orily, a graphic display and an arithmetic copro-
cessor are required. The minimal required free
storage capacity is about 4-Mbyte hard disc drive
and 4-Mbyte RAM memory. A superior configu-
ration is preferable and will of course provide
better performances.

4.3 Validation

Two types of materials were used to build two
laminated multilayer plates (laminate 1 and la-
minate 2) and one sandwich plate.

4.3.1 Material 1 (M1) : ply material

Material 1 is an orthotropic composite material
made of an epoxy resin reinforced with unidirec-
tional graphite fibres, with the following engi-
neering constants and elastic stiffness :

En =175 000 MPa
Ez=Es3 =7 000 MPa
G12=Gus =3 500 MPa
Gas | =1 400 MPa
Vi2= V13= V23 =0.25

Cun =176 174.5 MPa
Cuzz =2 349 MPa
Ca220=Cas3 =7 498 MPa
Caz33 =1 898 MPa
Ci212=Cua13 =3 500 MPa
Coasos =2 349 MPa
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4.3.2 Material 2 (M2) : core material

Material 2 constitutes the core of the sandwich
plate. It has the following engineering constants
and stiffness (Whitney (Loredo, 1993)) :

En=Ez =280 MPa
Ea =3 500 MPa
G =G =420 MPa
G =112 MPa
Vi3= Va3 =0.02

Viz =0.25

Ciz =77.2 MPa
Cun=Cuz =301.1 MPa
Cua =94.6 MPa
Caaas =3 547.3 MPa
Crais=Coss =420 MPa
Cizi2 =112 MPa.

43.3 Laminate 1 (without coupling)

This cross-ply laminate is composed of three
plies of equal thickness (0.3 mm) with a [0/90/0]
stacking sequence (Fig. 7). Using the classical
laminated plate theory, the following normalised
(Verchery, 1990) values (in MPa) are obtained
for A*, B*, D*, d* (d¢* corresponds to the d* ma-
trix computed with FEAD-LASP program, in-
cluding shear correction factors):

(119298 1754 0
[A*]= 63157 0 [B*]=][0]
L Sym 3500
7169200 1754 0 ]
[D*]= 13255 0
L Sym 3500
2800 0 1559 0
¥ — *] —
[a7] [ 0 2100} [ds"] [ 0 1790}

434 Laminate 2 (with coupling)

Laminate 2 is a 16-ply antisymmetric plate
with coupling (Fig. 7). The thickness of each ply
is equal to 0.2 mm. The corresponding A*, B*, D*
and d* matrices (in MPa) are:

70609 22373 0O
[A*] = 70609 0O
Sym 24118

3975 —2632

—6551 1289 —2632
[B*]=
1289

Sym

72580 22370 —987

[D*]= 68640 —987
Sym 24118
o [2450 0 | 1667 0
[d ]_[ 0 2450] [de ]_{ 0 1667}

4.3.5 Sandwich Plate

This symmetric sandwich is composed of a thick
core (18 mm in thickness) made of the material 2
and two facings (1 mm each) of the material 1
(Fig. 8). The values (in MPa) of the matrices A*,
B*, D* and d* are calculated using a special mix-
ed variational theory developed for sandwich struc-
tures (Pham Dang, 1976):

17813 243 0
[A*]= 971 0 [B*]=[0]
Sym 450
47743 536 O
[D*]z 2143 0
Sym 1039
419 0
*T__ *| —
=t % )
M1 0 M1 0
MI 90 Ml 45
Mi 0 M1 90
M1 -45
Laminate 1 M1 0
M1 45
M1 50
M1 -45

Laminate 2

Fig. 7 Two laminated plate types used in the study

M1 1 mm
‘ ‘M2 @amm
M1 1 mm

Fig. 8 Sandwich plate configuration
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4.4 Application examples

Three examples have been studied for the per-
formance evaluation of the different types of finite
elements. For all examples, a clamped square plate
has been considered. The deflection of the central
point has been compared for the different finite
elements. In a quadrant of the square plate, a 4 X
4 mesh was used for the finite element analysis
(Fig. 9). For the laminated plate with coupling,
the totality of the plate has been meshed using 8 X
8 elements except in the case of the FEAD-LASP
program where only 4X4 elements were used.
This accounts for an error for approximately 12%
in the FEAD-LASP analysis.

4.4.1 Thick and thin composite plates
(Laminate 1)
The analysis has been done for two types of

Fig. 9 Mesh generation for the quadrant of a square
plate

loading conditions : concentrated force at the cen-
tre of the plate and uniform pressure. Table 1
gives the results for the plate under concentrated
load in two cases : thick plate (L/H=11 and thin
plate (L/H=222). Table 4 gives the results for
the uniformly distributed load (L/H=222).

4.4.2 Moderately thick plate with coupling
(Laminate 2)

In this case, we used the laminate 2 with the
aspect ratio L/H equal to 62. The results are
given in Table 2 for concentrated load and Table
4 for the uniformly distributed load.

4.4.3 Thick sandwich plate

The comparison of the central deflection values
for this example'is given in Table 3 {concentrated
load) and Table 4 (uniformly distributed load).

In these examples, various finite elements for
plates were presented and their validity was stu-
died for the analysis of laminated and sandwich
plates. From results obtained here, they following
conclusions can be made.

(1) The transverse shear effect for thick la-
minated and sandwich plates has an important
influence.

(2) The Ahmad type element and the modified
volumetric finite element have globally the same

Table 1 Comparison of the central deflection for the clamped plate under concentrated load (laminate 1)

FINITE ELEMENT TYPES
L/H DKQ Ahmad FEAD-LASP 3D-Quadratic 3D-Cubic
11 0.12 0.60 0.71 0.53 0.53
222 2.71 2.52 2.22 2.18 2.48

Table 2 Comparison of the central deflection for the clamped plate under concentrated load (laminate 2)

FINITE ELEMENT TYPES

L/H

DKQ

Ahmad

FEAD-LASP

3D-Quadratic

3D-Cubic

62

4.87

491

4.29

4.90

5.09

Table 3 Comparison of the central deflection for the clamped sandwich plate under concentrated load

FINITE ELEMENT TYPES

L/H

DKQ

Ahmad

FEAD-LASP

3D-Quadratic

3D-Cubic

20

1.60

3.62

3.30

3.28

3.33
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Table 4 Comparison of the central deflection for the clamped plate under uniform loading

FINITE ELEMENT TYPES
Material Types DKQ Ahmad FEAD-LASP 3D-Quadratic
(LLa /“;I”:;Zl) 0.44 0.43 0.42 0.43
?E%n:atgz)z 110 110 0.95 1.09
(ia/ngiizcg) 271022 0.52 0.47 0.47

Table 5 Bending deflections of a [ (0/90°) 4] laminated plate under different loadings and boundary conditions
with the corresponding computation time for the reanalyses

Distributed load q=1 Mpa

Deflection (mm)

Reanalysis (s) Classical analysis (s)

Clamped 0.67 45 65
Supported 1.47 20 48
Concentrated load p=1 MN Deflection (mm) Reanalysis (s) Classical analysis (s)
Clamped 5.27 44 64
Supported 7.12 19 47

behaviour and can be used for composite plates
with convenient accuracy, especially. the volume-
tric element can have some advantages because of
its simplicity.

(3) The estimation of the constitutive law is of
primary importance for the laminated and sand-
wich plates. The classical laminated plate theory
does not apply to sandwich structures.

(4) The preceding conclusions are valid for the
FEAD-LASP program for both thin and thick
plates.

The other main advantage of FEAD-LASP is
that it permits changes in kinematic constraints
and loadings in a very simple and quick manner.
It then becomes possible to compute the bending
deflection of the plate when it is clamped or under
increasing loads, without repeating the entire data
input process. Table 5 below shows the results of
these reanalyses in terms of bending deflection
and corresponding computation time (ratio L/
h=10, 4 X4 mesh, 387 DX 33 Mhz coprocessor).

5. Conclusion

This paper discussed the general theories used

in the analysis of transversely loaded sandwich
and laminated plates. Methods of reanalysis were
examined and an original method was developed.
A general description of the resulting program,
FEAD-LASP, has been presented along with the
methods of implementation and a validation of
the results. The link between pre- and post-pro-
cessors (data input and output processing) and
the analysis stage (finite elements) to form a
design process was described and the attractive
features of the software, obtained by significant
reductions in computation time and user friendly
package, were emphasised.

The simplicity and the generality of the explicit
reanalysis method incorporated in FEAD-LASP
allows anticipation of a modular development of
the program or the creation of new software that
would consider a variety of geometrical structures
or permit the use of other element types.
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