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Application of Immersed Boundary Method
for Flow Over Stationary and Oscillating Cylinders
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IBM (Immersed Boundary Method) with feedback momentum forcing was applied to sta-
tionary and moving bodies. The capability of IBM to treat the obstacle surfaces, especially with
moving effect has been tested for two dimensional problems. Stationary and oscillating cylinders

were simulated by using IBM based on finite volume method with Cartesian coordinates. For

oscillating cylinder, lateral and vertical motions are considered, respectively. Present results such
as time histories of drag and lift coefficients for both stationary and oscillating cases are in good
agreement with previous numerical and experimental results. Also, the instantaneous wake

patterns of oscillating cylinder with different oscillating frequency ratios well represented those

of previous researches. More feasibility study for IBM has been carried out to two oscillating

cylinders. Drag and lift coefficients are presented for two cylinders oscillating sinusoidally with

phase difference of 180°.
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Nomenclature

A. . Amplitude of oscillating cylinder

D, ;(xs) : Bilinear interpolation function

D . Diameter of cylinder

F(xs,t) . Forcing density

F . Dimensionless in-line force

f . Momentum forcing added to momen-
tum equation

fe . Oscillation frequency

Im . Modulation frequency

fo . Strouhal number of fixed cylinder

g . Dimensionless gap between cylinders

KC . Keulegan—Carpenter number, Upay/f.D

n * Number of neighboring immersed bound-
ary points
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. Reynolds number, U.D/y, for fixed

and cross flow oscillating cylinder

. Reynolds number, UnaxD/ v, for inline

oscillating flow

. Strouhal number, 7D/ U.

. Dimensionless time

: Oscillation period, 1/£,

> Maximum cylinder velocity

. Free stream velocity

. Velocity component of fluid in x-

direction

. Velocity component of cylinder in x-

direction

. Velocity at grid point (7, 7)
. Velocity at immersed boundary point

Boundary velocity

. Velocity component of fluid in y-

direction

. Velocity component of cylinder in y-

direction
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Xs . Discrete immersed boundary point
Xyt > Position of cylinder in x-direction
Yewt > Position of cylinder in y-direction

Greek symbols

a . Negative gain of momentum forcing
B . Negative gain of momentum forcing
v : Kinematic viscosity
Superscripts
n . Time step
* . Intermediate level velocity
Subscripts
cyl . Cylinder
> Oscillation
. Grid point index, x-direction
: Grid point index, y-direction
. Modulation
ax > Maximum

. Fixed cylinder
. Discrete immersed boundary point

8M65§\.N.Q

. Free stream

1. Introduction

One of the main issues of computational fluid
dynamics is handling complex geometries and
moving bodies. The numerical simulations have
lagged the experiments during the last decades
due to the difficulties in treating complex geome-
tries and moving bodies numerically. Although
the few numerical simulations have well repre-
sented the global results observed by the experi-
ments, there is still much work to do in order
to simulate more complicated configurations. Re-
cently, new methodologies have been developed
to overcome the difficulty of generating special-
ly fitted surfaces to the complicated shapes of
bodies. Among such techniques, the immersed
boundary method (IBM) has shown promising
results.

The immersed boundary method (IBM) refers
to the imposing of body forces on set of grid
points at or inside the body surface. Such forces
are to bring the fluid velocities to wall velocities
at the points coinciding with surface location.

Since the surface in general does not coincide
with the computational grid points, the forces in
that case are to generate artificial velocities to the
grid points enciosed inside the body to those
outside the body so as to bring the interpolated
velocity at the surface closer as much as possible
to wall velocities. Details of the method can be
found in Saiki and Birigen (1996) gave a detail
explanation for the IBM method and summarized
collaborative researches over thirty years, mainly
in the biological fluid dynamics.

Two forms of the acting force have been pro-
posed so far ; the feedback forcing and the direct
forcing. The former method has been used by Peskin
(1982), Goldstein et al. (1993, 1995), Goldstein
and Tuan (1998), Saiki and Biringen (1996), and
Lee (2003). Peskin (1982) used momentum forcing
to simulate the flow in moving heart on Cartesian
grid. Goldstein and his co-authors (1993, 1995,
1998) used a spectral code to mimic somehow
scalloped shape riblets. Although, their method
showed reasonable results, the appropriateness of
it to more complicated shapes seems questionable
in the light of the severe limitation of time step.
On the other hand, since the forces are applied on
the grid points, the exact simulation of surfaces
which do not coincide exactly with the com-
putational grid points pushes the method to suffer
from the interpolation deficiency. This difficulty
becomes more pronounced when the pressure or
viscous forces at the surfaces are desired since
the surface location is not well determined. Lee
{(2003) analyzed stability of Saiki and Biringen’s
(1996) method and found that the linear inter-
polation of the virtual boundary velocity and sub-
sequent spreading of the virtual forcing relax
the time-step limit for stability up to four times.
Through his analysis, critical disadvantage for
large time-step limit for stability in feedback
method could be overcome.

The alternative approach for the forcing is the
direct method which determines the.forces from
the balance of the discretization equations after
imposing the desired velocities in the inertial
term. This method has been widely implemented
with different schemes, for example, Mohd-Y usof
(1997) used it with B/Spline Fourier pseudospec-
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tral transform ; Fadlun et al.(2000) used it FD
technique for 3D complex geométries ; Verzicco et
al. (2000) presented a LES of moving boundaries
which mimic the motion of the internal combus-
tion engine piston ; Kim et al.(2001) introduced
mass sink/source in the continuity equation to
satisfy no-slip condition on the immersed bound-
ary and used FV approach to simulate the flow
over cylinder and sphere.

Aside from the implementation of momentum
forces at grid points, Ye et al.(1999) and Udaykumar
et al. (1997, 2001) proposed a different approach
in order to simulate complex geometry inside the
Cartesian domains. In Ye et al.(1999) s method,
the control volumes near the immersed bound-
aries are reformed to exclude the solid part of the
cells containing the immersed body and including
the fluid part. The resulting cells are in general
reshaped in trapezoidal-like cells. Hence, inter-
polation schemes were developed to calculate
the fluxes across the faces of the new constructed
cells which retain the second-order spatial accu-
racy. Udaykumar et al.(1997) simulated multi
phase flows and also applied it to moving bodies.
Udaykumar et al.(2001) extended the method of
Ye et al.(1999) and applied it to channel with
moving wall, oscillating cylinder, deforming dia-
phragm problem.

The present study uses the feedback forcing
method suggested by Saiki and Biringen (1996)
in order to simulate flows around stationary and
moving cylinders. To treat stationary single and
multiple cylinders, the capability of feedback
forcing method has been guaranteed by the com-
parison of versatile results of present study with
those of previous experimental and numerical
researches. Also, the horizontally oscillating cy-
linder in a stationary flow and vertically oscil-
lating cylinder in a uniform flow are simulated to
verify present adopted method for moving bodies.
Those results were well compared with those of
previous experiments and numerical study using
moving grid technique. Feasibility study for IBM
with feedback forcing has been carried out to two
oscillating cylinders. Drag and lift coefficients are
presented for two cylinders oscillating sinusoid-
ally with phase difference of 180°.

2. Computational Details

2.1 Governing equations

The methodology of solving flows around sta-
tionary and moving cylinders using finite volume
technique with the treatment of immersed bodies
will be presented in this section.

Figure 1 shows the computational domains and
coordinates systems for different cases considered
in this study. The integral form of the governing
equations describing instantaneous incompressi-
ble viscous flow in a dimensionless form is given
by the continuity and the momentum equations as
follows ;

fa.4ds=o (1)
Gs
S [uav+ [atan) ds
&v és . (2)
=— [onds+4 [Vanas
s ReCS
where 7 is the unit vector normal to the control
volume surface and %= (%, v) the velocity vector
whose components are in x- and y-directions,
respectively.

The normalization of above equations using
cylinder diameter D and free stream velocity Us
results in dimensionless parameter of Reynolds
number, Re=U.D/v. For inline oscillation Re=
UnaxD/v is used and Upnax is the maximum cy-
linder speed. The equations are discretized on
non-staggered Cartesian grids. A second-order ac-
curate finite volume method is used in the present
study where the second-order two-step fractional
step method is employed for time advancement.
The scheme was used previously by Kim and
Moin (1985) and Zang et al.(1994). In this time
stepping scheme, the velocity is advanced from
time level ‘%’ to an intermediate level ‘*’ by
solving the advection-diffusion equation with-
out pressure term in which the nonlinear terms
are treated explicitly using second-order Adams-
Bashforth scheme. The diffusion terms are treated
implicitly using Crank-Nicolson scheme. There-
fore the semi-discrete form of the advection-dif-
fusion equation can be written as ;
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Fig. 1 Schematic diagram for computational domain and coordinate systems (a) one fixed cylinder, (b) two
fixed cylinders, (c) inline oscillating cylinder, (d) one cross—flow oscillating cylinder, (e) two cross-
flow oscillating cylinders
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/u*A—tu” dV-lr%/Bu”(u”.ﬂ) —u" N u" ) 1dS
v | Cs (3)
+2—m6[(Vu +Vu").n dS

The velocity boundary condition imposed in the
above equation uses the velocity at the full time
step corresponding to #”**'. Following the advec-
tion-diffusion step, the pressure correction can be
done by satisfying the integral mass conservation
equation given by

/(u”“.ﬁ) dS=0 (4)

cs

then the pressure correction step

n+l1

u —ut o (o
AV C[Vp dv (5)

(&)

results in the following Poisson equation.

[ adS=3; [ dS (o)
& &
After getting the pressure, %"* is calculated from
the resulting pressure field as follows ;

u"t=u* — At (V™) (7)
2.2 Immersed bouhdary mk‘et.l,lo‘d

2.2.1 Interpolation scheme

Generally, immersed boundary does not coin-
cide with grid points. So, interpolation is need-
ed for immersed bbundary value between. grid
points. Peskin (1982) used first-order cosine func-
tion for interpolation and extrapolation. Goldstein
(1993) interpolated velocities of grid points from
immersed boundary points with spectral interpo-
lation and extrapolated forcing term of immersed
boundary points from grid points with linear in-
terpolation. -Saiki and Biringen (1996) used bi-
linear interpélation that is also first-order accu-
rate.

In this study, bilinear interpolation is used to
know surface velocities with its position ‘iyﬁ‘for-
mation. The discrete surface points in Fig.iZ‘ are
immersed boundary points, xs. So, velociiy of
immersed boundary point # (xs) is interpoléted
from velocities, u;; at near by grid points. -

(a) Full cylinder body

of
P’y

(b) Upper left portion of the cylinder
Fig. 2 Superposition of the immersed boundary
points on the computational grid

- Bilinear interpolation scheme

#1541
ulxs)= 2, Dilxs) us; (8)
where
D;; (xs) zd(xs_xi> d (ys_yj> (9)
In Eq. (9),
d(x.s_‘Xi) :M if x:<xs (lOa)
(xi+1—xi)
(xi—Xiq)
and
d(xs—x:) =1 if xi=xs (10c)

2.2.2 Feedback momentum forcing

In implementing the method of Saiki and
Biringen (1996), no-slip condition is satisfied
with a feedback forcing function which is added
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Table 1 Numerical examples and details

Case Cylinder Re Grid number
1 One stationary cylinder 40, 100, 120, 185 336 %381
2 Two stationary cylinders, side-by-side arrangement 40, 100 336 X381
3 One cylinder, inline oscillation 100 331 X271
4 One cylinder, cross flow oscillation 185 336 X381
5 Two cylinders, side-by-side arrangement, cross flow oscillation 185 336 X381

to the momentum equations. This feedback mo-

mentum forcing function, f(Xs, ) can be ex-

pressed as
F(xs, t)zaof[u(xs, t)—Vixs t)]dt’ i
+hlulxs, t) —Vixs, t)]

Here the coefficients of @ and S are big negative
constants and they have [1/T?] and [1/T] di-
mension, respectively.  term has role to produce
oscillations and A term to dampen the oscilla-
tions. @ and £ are flow dependent constants and
there is no general rule to determine them. V (X,
t) is boundary velocity and if the boundary is
fixed, it is zero for no-slip condition. Deforming,
rotation and moving bodies can be simulated by
varying V{(Xs, t) adequately. Velocity difference,
V<X87

the feedback forcing and it is the momentum

actually error, % (X, t) — ) determines
forcing that controls boundary velocity, # to be
same with desired velocity V (X, ).

If the boundary does not rotate or move,
V(Xs, t') and V(X
(11) becomes Eq. (12). Time integral is replaced
3), we get Eq. (14) for
feedback momentum forcing.

¢) becomes “0” and Eq.

with Riemann sum, Eq. (1

Flxs, )=a [[u(xs, D]dt+Blulxs )](12)

t

/u (xs, 1)

N
dt’zgu(xs, 7 At (13)

=t
Fxs, h=aZ ulxs, t)+Blulxs, )] (14)
With Eq.(14) forcing density, F (xs, ) at im-
mersed boundary is calculated and re-distributed

to grid points near immersed boundary again.

Sum of nearby forcing density multiplied by weight-
ing factor is the momentum forcing, f of nearby
grid point. The weighting factor is given from the
interpolation scheme.

| .

f 7 g u(xs) (-X.s‘) (15)
Here, n is the number of immersed boundary
points that affect the grid point. The method pre-
scribed above is ‘area-weighted’ method by Saiki
and Biringen (1996).

2.3 Numerical conditions

The application cases of IBM with feedback
forcing considered in this study and mesh reso-
lutions for different cases are listed in Table 1.
The minimum grid spacing in the vicinity of the
cylinder for all cases was AXmin=AYmin=0.02 and
clustered coarse grid was used far from cylinder.
At the inflow and outflow, uniform flow condi-
tions and convective conditions are assumed, re-
spectively. At the upper and lower boundaries,
shear free conditions are imposed as shown in
Fig. 1.

‘Except inline oscillation, f, is the Strouhal
number of one fixed cylinder at same Re and f.
is oscillation frequency of cross flow and inline
oscillation.

For stationary cylinder flow used @=—3000
and f=—40 and ¢=—20000 and S=—100 for
oscillating cylinder flow.

3. Results

3.1 Single stationary cylinder

Lai and Peskin (2000) showed several methods
to calculate drag and lift forces of body imple-
mented by immersed boundary methods. In this
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Table 2 Drag and lift coefficients for over a fixed
circular cylinder

Re Cp CL St
40 1.53
Present 100 | 133 | 028 | 0.166
120 | 132 | 036 | 0173
Kim et al. 40 1.51 '
(2003) 100 | 133 | 032 | 0165
40 151
Pa(rlkg;;)al' 100 | 133 | 033 | 0165
120 | 132 | 041 | 0175

(c) Re=120

Fig. 3 Spanwise vorticity contours near a circular

cylinder

study, for the stationary flow, drag and lift forces
are evaluated by integrating applied momentum
forcing. Drag and lift coefficients and Strouhal
number were compared in Table 2. Both of co-
efficients at corresponding Reynolds number are
in good agreement with Kim et al.(2001) using
direct IBM and Park et al.(1998) using body-
fitted mesh. Also, present Strouhal numbers at
different Reynolds numbers agree well with those

151

“ Re=40, Present
Re=40, Park et al.(1998)
. Re=100, Present

Re= 100, Park et al.(1998)

«_4
”’__
PR

«r o

Al b b b )
i} 30 60 90 120 150 180

0

Fig. 4 Wall pressure coefficients along the cylinder

surface

of previous studies.

Instantaneous spanwise vorticity contours in
Fig. 3 clearly show the flow dependency on Rey-
nolds number. As well known, the flow around
single stationary cylinder at Re=40 is charac-
terized by steady symmetric separation bubble
and unsteady Karman vortex street dominates in
wake region for Re=100 and 120.

Figure 4 shows the comparison of present pres-
sure coefficient with that of Park et al.(1998)
obtained by a body-fitted mesh. Present pressure
coefficients at Re=40 and 100 obtained by feed-
back IBM well represent high resolution numeri-
cal results of Park et al.(1998).

3.2 Two stationary cylinders in a side-by-

side arrangement

The flow over two circular cylinders in a side-
by-side arrangement was simulated by using feed-
back IBM. Generally, there are two non-dimen-
sional variables that govern the flow over two
cylinders in a side-by-side arrangement. One is
the Reynolds number and another is the dimen-
sionless gap between two cylinders.

Flow over two cylinders in a side-by-side ar-
rangement was studied by Zdravkovich (1997),
Sumner et al.(1999) and Williamson (1985). Re-
cently, Kang (2003) examined, using direct IBM,
Reynolds numbers and gap ranging of 40<Re<
160 and g<{5, respectively. Within the ranges of
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(b) Re=100 and g=1.5

Fig. 5 Spanwise vorticity of two fixed cylinders

Re and g of Kang (2003), two cases of g=1 at
Re=40 and g=1.5 at Re=100 are considered in
this study to compare the results obtained by
present feedback 1BM with those of Kang (2003)
using direct IBM.

Figure 5 shows wake patterns visualized by
contours of spanwise vorticity at g=1 for Re=
40 and g=1.5 for Re=100. The steady flow and
apparently symmetric wake patterns about the
centerline without vortex shedding can be ob-
served in Fig. 5(a). Time histories of drag and lift
coefficients at g=1 for Re=40 shows the steady
state in Fig, 6(a), which can be comparable to
Fig. 5(a).

In case of g=1.5 at Re=100, same wake pat-
tern with vortex shedding in almost equal phase
can be observed at both of upper and lower cy-
linders. Further downstream, vortices occurred at
both cylinders start to merge as shown in Fig. 5
(b). Above wake patterns can be deducted from
time histories of drag and lift coefficients in Fig.
6(b).

Before transition duration around f<50, lift
coefficients of upper and lower cylinder are anti-
phase (of 180° phase difference). After transition,
even lift coefficients for both cylinders in-phase
(of the same phase), the drag coefficients are out
of phase. Thus, the flow structure is called the in-

phase-synchronized wake pattern as observed in

2 '.\\"-\__5‘
151
- C,, Upper cylinder
3 C, Upper cylinder
1 — = = = C, Lower cylinder
< F — — = = C, Lower cylinder
o 05 .
& i w
)
or
EN 7 e ™ e = e amm mm m m m — ae —  e
-0.5+
Y] S| N -
50 100
Time
(a) Re=40 and g=1

I e, Upper cylinder
C, Upper cylinder
C,, Lower cylinder
-------------- C, Lower cylinder

—h
i

-1 T T R T S N S
50 100 150
Time
(b) Re=100 and g=1.5
Fig. 6 Time evolutions of the lift and drag coeffici-

-ents according to the wake pattern

Table 3 Drag and lift coefficients for over two fixed
circular cylinders

case Co G St
(avg)
Present Re=40, g=1 [.73 | 0.38
Re=100, g=1.5 1.47 | 0.28 | 0.161
Kang Re=40, g=1 1.7 0.37
(2003) Re=100, g=1.5 1.43 | 0.27 | 0.164

Kang (2003).

Averaged drag and lift coefficients are com-
pared and agree well with Kang (2003) in Table
3. Such as those wake patterns and characteristics
of drag and lift coefficients for two cases of g=1
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at Re=40 and g=1.5 at Re=100 are in good
agreement with Kang (2003). Also, present time-
averaged drag and lift coefficients quantitatively
agree well with those of Kang (2003) as shown in
Table 3.

3.3 Inline oscillation

Inline oscillation of cylinder has been studied
to understand flow and structure interaction. In
this study, inline oscillation has been simulated
by using feedback IBM and results were com-
pared with those of Diitsch et al.(1998)’s experi-
mental study and Guilmineau & Queutey (2002)’s
numerical study.

Inline oscillation is characterized by two di-
mensionless parameters of Reynolds number, and
Keulegan-Carpenter number (Keulegan, 1958).
The trajectory of cylinder center and velocity
of cylinder are imposed as X () =—A.sin
(2mft) and wuey(t) =—2xfA cos(2mft), respec-
tively. So, Keulegan-Carpenter number is rede-
fined as KC=27A/D. In present research, in-
line oscillation of cylinder with KC=35 at Re=
100, which is the same condition of Diitsch et
al.(1998) and Guilmineau & Queutey (2002), is
calculated.

Figure 7 shows vorticity and pressure con-
tours of instantaneous field at four different phase
positions of 0°, 60°, 180° and 270°. When the
phase position is between 0°~90°, we can see the
cylinder is moving from right to left and deceler-
ating in the pressure contour. At position 0° in
Fig. 7(a), pressure at left side of cylinder is high
and pressure at top and bottom of the cylinder is
low. As cylinder decelerates, left side pressure
increases. At position 60° in Fig. 7(b), it moves to
left, however, right side pressure is higher than
left side. This is because the fluid near the cylin-
der is faster than the decelerating cylinder. When
the cylinder reaches at position 90°, it stops and
restarts to move to right during position 90°~
180°.

As the cylinder moves to left from right, a vor-
tex pair is developing near the cylinder and se-
paration takes place. When it comes to its extreme
left position, phase position 90° the cylinder
stops and restarts to move in opposite direction.

(d) Phase position=270°
Fig. 7 Pressure and vorticity isolines (negative
values dashed) at Re=100 and KC=5

In Fig. 7(d), again, another vortex pair begins to
develop around the cylinder and it splits and goes

~ through the counter rotating vortex pair that was

made during previous right-to-left movement.
The boundary layer merges with the vortex pair
in front of the cylinder. In Fig. 7(d), the cylinder
reaches at its extreme right position, phase posi-
tion=270°. Another boundary layer is developing
again, so the above motions happen periodically.
These periodical inline motions obtained from
this study agree very well with those of Diitsch et
al.(1998) and Guilmineau & Queutey (2002).
As shown in Fig. §, the flow fields around in-
line oscillating cylinder at three different phase
angles of 180°, 210° and 330° are illustrated by
streamlines obtained by experimental results from
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Fig. 8 Measured Diitch et al. (1998) (left), Guilmineau &
Queutey (2002) (center) and computed streamlines
(right) in the vicinity of the cylinder at Re=100

and KC=S5 at different phase positions

Diitsch et al.{1998), numerical results from Guilmineau
& Queutey (2002) and present feedback IBM. These
three different studies predicted almost identical
flow fields.

For further quantitative comparison in Fig. 9,
local phase-averaged velocities at three different
phase angles corresponding to Fig. 8 are compar-
ed with numerical results of Guilmineau & Queutey
(2002) . Present velocity profiles at four locations
for a constant x-position give good comparison
with those of Guilmineau & Queutey (2002).

The time variation of inline force computed in
Fig. 10 fits well with that of Guilmineau & Queutey
(2002). But both results from present and Guil-
mineau & Queutey (2002) have discrepancy with
Morison equation (Chakrabarti, 1987) around
phase positions, £/ T.=0.3 and 0.8.

3.4 Cross-flow oscillation

In present research, the cross-flow oscillation
of single cylinder is calculated for Re=185, A/
D=0.2 and two cases of fo/fo=08 & 1.1 ac-
cording to numerical results of Guilmineau &
Queutey (2002). The trajectory of cylinder center
along y-direction is imposed as Ve (#) =—Ae
sin(27fot) based on Guilmineau & Queutey (2002)’s
study.
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Fig. 10 Comparison of the dimensionless in-line
force among present, Morison equation and
Guilmineau & Queutey (2002)’s computa-
tion at Re=100 and KC=5

Table 4 Drag and lift coefficients for over a fixed
circular cylinder at Re=185
Re=185 CD Cers St

Present 1.31 | 0.44 | 0.191
Guilmineau & Queutey (2002) | 1.29 | 0.44 [0.195

Table 5 Drag and lift coefficients for cross flow
oscillation at Re=185

fe/fo| Co | Cuoms

Present 1.19 | 0.11
Guilmineau & Queutey (2002) 08 122 ] 0.1
Present 1.38 | 0.76
Guilmineau & Queutey (2002) L 1.37 | 0.87

First, the natural shedding frequency from the
stationary cylinder, f, of present result is com-
pared with that of Guilmineau & Queutey (2002)
in Table 4, which is in good agreement. Also, the
satisfactory result of comparison of time-averaged
drag and RMS lift coefficients with present results
and Guilmineau & Queutey (2002) can be seen in
Table 5.

Figure 11 shows the time evolutions of drag
and lift coefficient for fe/f,=0.8 and 1.1. The
beating frequency decreases with excitation fre-
quency (fe) increasing. In both cases, drag coeffi-

s C,
A
A5F
_2: . | ST A N ; | AT |
50 100 150 200
Time

<a) fe/fo=0~8

BN

1.5
z ¢, ”
ot TV W S
50 100 150 200
Time
(b) fe/fo=1.1
Fig. 11 Time evolutions of the lift and drag coeffi-

cients according to the wake pattern at Re=
185

cient has same frequency with excitation frequen-
cy, which suggests that the excitation frequency
dominates the flow in lock-in regime. In case of
fe/fo=1.1 as shown in Fig. 11{b}, it has modu-
lation phenomenon which is not shown in fo/
fo=0.8 case. Both of drag and lift coefficients for
fe/fo=1.1 show regular signs of the influence of
a higher harmonic. These results well reproduced
the numerical results of Guilmineau & Queutey
(2002).

The good agreement between present results
and numerical results of Guilmineau & Queutey
(2002) is shown by the comparisons of flow fields
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(b) fe/fozl'l
Fig. 12 Instantaneous streamlines. In all frames, the
location of the cylinder is at its extreme upper
position at Re=185, Guilmineau & Queutey

(2002) (left) and present result {right)

Alte LY
(b) fe/fo=1.1

Instantaneous vorticity contours. In all frames,
the location of the cylinder is at its extreme

Fig. 13

upper position at Re=185, Guilmineau &
Queutey (2002) (left) and present result (right)

visualized by streamlines and spanwise vorticity
in Figs. 12 and 13. As expected, fe/f,=1.1 case
has stronger vorticity and more frequent vortex
shedding than f./f,=0.8.

Figure 13 shows the comparison of pressure co-
efficient with resuit from Guilmineau & Queutey
(2002), where the cylinder is at its extreme upper
position and the x-coordinate indicates the angle
from front in clockwise direction.

3.5 Two-oscillating cylinders

In this study, two oscillating cylinders are sim-
ulated by using same conditions of A./D=0.2
and f./f» with those of previous cross flow oscil-
lation. The two cylinders oscillate as Eqs. (16)
and (17), respectively.

ycyl,uﬂ(t) :g/2+AeSin(27Tfet> (16>

ycyl,dn(t)=_g/2’_AeSin(27l'fet> (17)

1R
05F
of
-
-0.5 -
S .
U [ ( > :/
-15F e {’o" -z
8 w P \
2F G [ =11
- '(w" .
251 Present
o . Guilmineau & Quentey (2002)
-3 2 - = - - Present
35 - o ” J(:'ujlmf'negn & Que’ule‘v (2002) )
o 100 200 300
Fig. 14 Wall pressure coefficients along the cylinder
P g

surface. The location of the cylinder is at its
extreme upper position at Re=185

Where, ‘up’ designates upper cylinder and ‘dn’
lower cylinder. The dimensionless gap of two
cylinders g is in between 2 and 2.8.

Figure 15 shows the vorticity contours and
streamlines when the upper cylinder is at extreme
upper position and the lower cylinder at extreme
lower position (g=2.8). Two-cylinder oscilla-
tion has closed streamlines which are not seen in
one-cylinder oscillation at same frequency ratio.
In Fig. 16, drag and lift coefficient is plotted as a
function of time and modulation phenomenon
also can be found in the case of one-oscillating
cylinder at £,/ fo=1.1. According to Kang (2003),
even though it is on fixed cylinders, this two-
oscillating cylinder case may be in mixed pattern
of flip-flop and deflected pattern. g varying with
oscillating cylinders is one of the parameters that
determine the regime of wake pattern. Two cy-
linders seem to cross the border for flip-flop and
deflected pattern repetitively. '

Velocity spectra in Fig. 17 are measured at x =
2, y==%4. The velocity spectra at upper point
(x=2, y=4) shows the dominance of natural
frequency but at the lower point, excitation fre-
quency is stronger than natural frequency. Series
of modulation frequency and the difference of
oscillating frequency and modulation frequency
(fe—fn) have peak values in Fig. 17. As sub-
harmonic response with f.=4fn is observed and
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Fig. 15 (a) Instantaneous vorticity contours and (b) streamline of two-oscillating cylinders at

2 -
= 0r
-2
fe/fa=08, g=28
3r
- Upper cylinder
25 - CD ~~~~~~~ Lower cylinder
2 A R A
15k A YN
Sl LS
o 1F Cl.\ modulation
O |
0.5 ) . N fia
\ 1l :
0 |
/ AL AL AR AR ’ i M AN
_Osw-;v g,'"g!‘;\f v|xv‘v ViV
S N od e b
350 475 500 - 525 550
Time

Fig. 16 Drag and lift coefficient as a function of
time. ‘d’ and ‘I mean deflected pattern and
flip-flop pattern respectively

the exciting frequency is not dominant, this case is
regarded as in non-lock-in regime.

4. Conclusions

Feedback immersed boundary method is ap-
plied to stationary and oscillating cylinders flow.
To validate, one and two fixed cylinders are simu-
lated. Pressure coefficient, wake pattern and drag
& lift coefficients are presented and compared
with previous results. Inline oscillation and cross

6 b
%
5 ———— Upper point
i Lower point
ar
X [ fe
Q sl 3
vt i
& i
) b
2r i
v b
- M l i
1 :‘ 2 m-{”) r: : ! 6-,;:
B A
0 + S i Y AWA A \
fQ?}I) 0.2 0.3 0405
. <
Fig. 17 Velocity spectra taken at x=2, y=4 (upper

point) and x=2, y=—4 (lower point)

flow oscillation are considered for moving-body
application. As well as flow pattern, detailed velo-
city profile and drag & lift coefficients are de-
scribed. For cross flow oscillation, the cases of
fe/ fo=0.8 and f./fo=1.1 at Re=185 are verified
to be in lock-in regime.

For further application, immersed boundary
method is applied to two independently moving
cylinders in uniform flow. At Re=185, A./D=
0.2, f./f»=038, g=1.2, two oscillating cylinder
flow has asymmetric flow pattern, modulation
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phenomenon and vortex roll-up that are not seen
one-cylinder oscillation at same Re and frequen-
cy ratio. In velocity spectra obtained in the wake
region, several peaks are found and that peaks are
related with modulation, natural and excitation
frequency.
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