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THE MULTILEVEL SECURITY PROBLEM OVER
CLASS SEMIGROUPS OF IMAGINARY QUADRATIC
NON-MAXIMAL ORDERS

YONGTAE KIM

Abstract. A scheme based on the cryptography for enforcing mul-
tilevel security in a system where hierarchy is represented by a par-
tially ordered set was first introduced by Akl et al. But the key
generation algorithm of Akl et al. is infeasible when there is a large
number of users. In 1985, MacKinnon et al. proposed a paper
containing a condition which prevents cooperative attacks and op-
timizes the assignment in order to overcome this shortage. In 2005,
Kim et al. proposed key management systems for multilevel secu-
rity using one-way hash function, RSA algorithm, Poset dimension
and Clifford semigroup in the context of modern cryptography. In
particular, the key management system using Clifford semigroup of
imaginary quadratic non-maximal orders is based on the fact that
the computation of a key ideal K¢ from an ideal EKo seems to be
difficult unless E is equivalent to O. We, in this paper, show that
computing preimages under the bonding homomorphism is not dif-
ficult, and that the multilevel cryptosystem based on the Clifford

semigroup is insecure and improper to the key management system.
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1. Introduction

The multilevel security problem arises in organizations where hierar-
chical structures such as government, diplomacy, business and military
exist. In 1982, Akl et al. [1] presents a solution to the multilevel se-
curity problem based on cryptography, and they generate the keys Kj;
relying on the fundamental assumption behind the RSA. The key gen-
eration algorithm of them has the advantage that only copy of a piece
of information is stored or broadcast and its disadvantage is the large
number of keys held by each user. In an effort to overcome this shortage,
MacKinnon et al. [10] proposed a paper containing an additional con-
dition which prevents cooperative attacks and optimizes the assignment
by giving an improved algorithm to remove the nodes of the longest
chain. In 2005, Kim et al. [8] proposed key management systems for
multilevel security using one-way hash function, RSA algorithm, Poset
dimension and Clifford semigroups. In particular, the key management
system using Clifford semigroups of imaginary quadratic non-maximal
orders is based on the fact that the computation of the key ideal Kjy
from an ideal EKj seems to be difficult unless E is equivalent to O.
Using the properties of commutative semilattice of idempotents, in this
paper, we show that computing preimages of the key ideal Ky under the
bonding homomorphism is not difficult, and that the multilevel cryp-
tosystem based on the Clifford semigroup is insecure and improper to

the key management system.

2. Multilevel security problem and its cryptographic solu-

tion

The notion of the multilevel security and the key management can
be found in [1,10]. Assume that the users of computer system are di-

vided into a number of disjoint sets, Uy, Us, -+ ,Up, which are called
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security classes. By the partially ordered relation < on the set S =
{U1,Us, -+ ,Up} of classes, the relation U; < U; in the partially ordered
set (S, <) means that users in U; have a security clearance lower than
or equal to those in Uj, in other words, users in U; can have access
to information held by users in U;, while the opposite is not allowed.
Let z,, be a piece of information, that a central authority(CA) desires
to store in (or broadcast over) the system. Then the meaning of the
subscript m is that object = is accessible to users in class U,, and the
users in all classes U; such that U,, < U;. In addition to above condi-
tions, the access to information should be as decentralized as possible
so that authorized users are able to independently retrieve z,, as soon
as it is stored or broadcast by the CA. In [1], Akl et al. proposed a
cryptographic solution to the multilevel security problem in three steps
as follows.

Step 1 : The CA generates n (deciphering) keys, Ky, Ks, - , Ky, for
use with the crytoalgorithm.

Step 2: Fori =1,2,--. ,n, key K is distributed to all users in U; who
keep it secret.

Step 3 : In addition, for ¢,j = 1,2, ,n, all users in U; also obtain K;
if U; < Uj.

Let Ex and Dk be enciphering and deciphering procedure under the
control of the ciphering key K. When an information z,, is to be stored
(or broadcast) it is first encrypted with K, to obtain 2’ = Ek, (z,) and
then stored or broadcast as the pair [z, m]. This guarantees that only
users in possession of K,, will be able to retrieve z,, from z,,, = Dk, (z').
This solution has the advantage that only copy of z,, is stored or broad-
cast and its disadvantage is the large number of keys held by each user.
In order to solve the key storage problem, Akl et al.[1] proposed a key
management system in which a user in U; stores only own key Kj, and

can compute from this the key K; if and only if U; < Uj. In such a
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system, however, there exists the possibility of two users collaborating
to compute a key to which they are not entailed. In [10], MacKinnon
et al. formulate a condition which prevent such cooperative attacks and
characterize all keys assignments which satisfy the condition, and they

proposed the following algorithm;

Algorithm : Longest Chain
Step 4 : Find the longest chain {i1,--- ,i} in the poset.
Step 5 : Assign to this chain the smallest available prime p ( which now
becomes unavailable).
Step 6 : Remove nodes i1, - - - ,ix from the poset.

Step 7 : If the poset is not empty, go to Step 4.

Although its running time is O(|S|?), this algorithm is just an heuris-
tic and the authors generate the keys K; relying on the fundamental
assumption behind the RSA.

3. The structure of the class semigroup Cls(O)

In this section, we introduce some facts concerning class semigroups of
orders in imaginary quadratic fields. Most of the terminologies, through-
out this paper, are due to Gauss[6], and notations and some preliminaries
are due to Cox[4], Zanardo and Zannier[13] and Jacobson[7]. The nota-
tions O, Z and @ denote the imaginary quadratic non-maximal order,
the ring of integers and the field of rational numbers respectively. Let
D; < 0 be a square free rational integer, D = 4D;/r?, where r = 2 if
D;=1mod4, and r =1if D; = 2,3 mod 4. Then K = Q(v/D;) is an
imaginary quadratic field of discriminant D. Note that K = Q(vD). If
a, 3 € K, we denote by [, f] the set aZ + 3Z. An order in K having
conductor f with discriminant Dy = f2D is denoted by O = |1, fw],
where w = (D + vD)/2. An (integral)ideal A of O is a subset of O
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such that a + 3 € A and aA € A whenever a,0 € A,A € O. For
a € K,o/,N(«) and Tr(a) denote the complex conjugate, norm and
trace of « respectively. Let v = fw. Then any ideal A of O (any O-
ideal) is given by A = [a,b+cy], where a,b,c € Z,a > 0,c¢>0,c|a,c| b
and ac | N(b+ ¢y). If ¢ = 1, then A is called primitive, which means
that A has no rational integer factors other than 1. Then A = [a,b+ 7]
is O-ideal if and only if a divides N(b+ ). We say that A and B are
equivalent ideals of O and denote A ~ B if there exist non-zero o, 3 € K
such that (a)A = (8)B (this relation actually is equivalent relation).
We denote the equivalence class of an ideal A by A. An ideal class T
is called idempotent if 7> = T and the ideal I is also called idempotent.
Let I(O) be the set of non-zero fractional ideals of O, and P(O) the set
of non-zero principal ideals of O. Then Cls(O) = I{O)/P(O) will be
the class semigroup of the order O. We remind that the commutative
semigroup S is called a Clifford commutative semigroup if one of the
following equivalent statements holds (Confer [13]).

C1) every element z of S is contained in a subgroup G of S,

C2) every element z of S is regular, i.e. there exists y € S such that
r = z%y (such an z is called von Neumann regular),

C3) S is a semilattice of groups.

In the sequel, we will set the positive definite quadratic form u(z,y) =
az?® + bry + cy? as (a,b,c) for brevity, and call n the root of u(z,y)
if u(n,1) = 0, where 7 lies in the upper half plane. We begin with

introducing the following lemma.

Lemma 3.1. ([9], Lemma 3.2 ) Let u(z,y) = (a,b,c) be a positive
definite quadratic form with discriminant D¢, where k = gcd(a, b, ¢). Let
n be the root of u(z,y). Then the ideal [a,an) is invertible if and only if
k =1 in the order O = [1,~] of K.

In particular, if a = k, then we denote the ideal [k, kn] by E;. By

simple calculations and Lemma 1, it is easily shown that Ey = [k,]
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for any divisor k | f. To clarify the structure of Cls(O), we need the

following two lemmas.

Lemma 3.2. ([13, Theorem 10]) Let I = [a,b + 7] be a non-zero
O-ideal and ged(I) = k. Then we have E,% =kE,,II' = aFE,IE; = kI.

Note that Ei’s are the only idempotent elements in the order O. For

a quadratic form u(z,y) = (a, b, ¢), we define
ged(u(z,y)) = ged(a, b, ¢), ua(z,y) = (1/ ged(u(z, y)))u(=,y),

ged(I) = ged(a, Tr(b+7v), N(b+7)/a)

for a non-zero O-ideal I = [a,b + 7], and denote the discriminant of I
by Tr(b+ )% — 4N(b+ ).

Lemma 3.3. Suppose that I and J are O-ideals with same dis-
criminant Dy such that ged(I) = ki,gcd(J) = ky. Then ged(IJ) =
lem(ky, k2).

Proof. Let u({z,y) and v(z,y) be positive definite quadratic forms
with discriminant Dy corresponding to the ideals I and J respectively.
We now define u(zx,y) = kyui(z,y) and v(z,y) = kovi(z,y), where ky =
ged(u(z,y)) and ko = ged(v(z,y)). In this case, if f = kidy = kads,
then u1(z,y) and vi(z,y) are primitive with discriminant d?D and diD
respectively. From Gauss[6, art.236], the direct composition Ui (z,y) of
u1(z,y) and vy(z,y) has the discriminant d2D, where d = ged(dy, da).
From elementary number theory, we have f = kd, where k = lem(k1, k2).
From this fact, if we denote U(z, y) the direct composition of u(z,y) and
v(z,y), then we have gcd(U(z,y)) = k. This completes the proof. [l

It is well-known that the cardinality of Cls(O) is finite. Now we
are ready to clarify the structures of the group G5 and the semigroup

Cls(0).
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Theorem 3.4. ([9], Theorem 3.7) The class semigroup Cls(O) =
Uk fGE;’ where GEE is the set of all classes containing O-ideals I with
ged(I) = k.

Note that Gz (= Cl(O), the class group) contains all the equivalence
classes of invertible ideals in O and &, which is the set of all the equiv-
alence classes of idempotent in O, is the semilattice since Cls(O) is the
Clifford semigroup. In Cls(O), for E;, E; € € such that E; < E; in
the partial order defined on &, there exists a bonding homomorphism
¢TE] Gy — GE—j. In [13], Zanardo and Zannier proved the following
theorem which ensures the existence of the surjective bonding homo-
morphisms among the groups G, and gave the method for finding a

preimage of a non-invertible ideal under the bonding homomorphism.

Theorem 3.5. (Confer [13, Theorem 16 and Theorem 17]) Let Fy =
[k,7), where k | f, and let I be an O-ideal such that I € Gg;. Then
JE}, = kI for some invertible ideal J. Therefore all the bonding homo-

morphisms of the Clifford semigroup Cls(O) are surjective.

The general and eflicient algorithms for multiplication of ideals are
referred to [3,4,5].

4. Analyses of KMS

In (8], Kim et al. proposed four key management systems(KMS)
for multilevel security. Among them, we now revisit the KMS using
the Clifford semigroups of imaginary quadratic non-maximal orders to

consider its security. The KMS proceeds as described in [8].

4.1. KMS using the properties of semilattice of idempotents

The parameters needed to class semigroups of imaginary quadratic
non-maximal orders are first selected, and then the idempotents of the

class semigroups are introduced.
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1. a sufficiently large conductor f.

2. an idempotents Ej, of Cls(O) is the equivalent class of an ideal of the
form FEy = [k, 7], where k is a divisor of f.

3. for Ey, E; € &, where the ideal Ej, = [h, 7], the partial order < on &£
defined by Ej < E, if hlk.

4. a key ideal Kj.

If E’:,F] are idempotents, where FJ < E;, then the bonding homo-
morphism ¢p g : Gg; — Gg; is defined by %(F) = E;K, where
K € GE_,-' First, the CA assigns an idempotent ideal Ej, to each
class U;, and selects a random key Ky, and computes Ey, Ko, Ey, Ko,
and then distributes each of them to the classes Us and Us respec-
tively. The CA next computes Ey,Ey, Ko, Ex, Fx; Ko, Ey, Egs Ko, and
Ey, Ey, Ko, and then distributes them to Uy, Us, Us and Uy respectively
in the third row of Fig.1. In this way, the CA computes the keys of
all classes, and distributes each of them respectively. Then the users
in an upper class can compute all keys belonging to classes lower than
itself. In particular, the authors in [8] claimed that the computation of
Ky from Ej, Ko seems to be difficult unless Ej, is equivalent to O.

4.2. Analyses of the KMS

In this section, we like to analyze the KMS above by considering the
structure the class semigroups and the properties of their ideals in the
following points of view. Let Ej, Ex, Ko and the corresponding bonding
homomorphiszl_ qS@ : Gﬁ : GE; be the same as above, and we
assume that Fy < Ej, where Ej € Gz

4.2.1. Computing preimages under the bonding homomorphism. 1. Kim
et al.[8] are right in saying that the users in an upper class can compute
all keys belonging to classes lower than itself.

2. The authors claimed that the computation of Ky from E; Ky seems
to be difficult unless Ej is equivalent to O. It, however, is not difficult
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to calculate Kg from J = ExKjp. In fact; Jacobson[7] says that the al-
gorithm in Theorem 2 is one to one on the level of ideals, but given an
equivalence class J € GE,C’ one can apply it to any ideal representative
equivalent to J, thereby randomizing over the ideal classes in CI(O)

whose images under ¢, are equal to J.

4.2.2. Choosing the key ideal. 1. In [8], the authors choose the key ideal
Ky arbitrarily. It, however, is not easy to select a non-invertible ideal of
a non-maximal order.

2. In general, for an (invertible or not) ideal Ky with ged(Ko) = h,
Theorem 3.5 ensures that there exists an invertible O-ideal K such that
KE;, = hKp, and thus KoE; = KE; by Lemma 3.2. From this fact,
without loss of generality, Gz~ can be replaced by Cl(0O), and h can be
always taken 1. For brevity, we denote ¢y the bonding homomorphism

of CL(O) to G-,

4.2.3. Security of the KMS. 1. Theorem 3.5 describes an algorithm for
computing the required preimages given only a representative of an ideal
class in G and k under ¢. In general, we have | Gz |<| Cl(O) |,
which means that the preimage of a representative of an ideal class in
Gg; under ¢y is not unique. Since there are |Ker(¢x)| different preim-
ages of J under ¢, the worst case number of attempts before one expect
to succeed with this strategy is at most |Ker(¢x)|, which is significantly
small in general. The procedure for computing preimage by changing
under ¢ can be randomized by changing the representative of the ideal
equivalence class. If the first chosen preimage does not find I, the pro-
cess is simply repeated until it is found.

2. On the other hand, if the number of users U; of the KMS are large,
then so are the number of idempotents Ej, of the class semigroup Cls(O)

used. From Theorem 3.4, the number of prime factors of f becomes
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large, and thus each length of the prime factor is relatively small if f
is fixed, which means that the multilevel security problem in Cls(O)
of the above KMS is reduced to the multilevel security problem in the
class group CI(O)(Recall that the class group CI(O) is a proper sub-
group of Cls(O) by Theorem 3.4) and a lot of number of finite fields
corresponding to the prime factors of f. Thus, the cryptosystems in
the class semigroup Cls(O) using non-invertible ideal offer less security
than cryptosystems in class group CIl(O). In this case, the conductor f
can be factored completely so that the structure of Cls(O) can be easily
revealed by Theorem 3.4, and thus the cryptosystem based on Cls(O)
can be easily broken.

3. By Lemma 3.3, we have Ey, By, = Ex, if ko|k1, and thus the deci-
phering key E, Ex, Ko of the user U, in Step 1 and Step 2 is equal to
szTO- That is, the multiplication of two idempotents which are totally
ordered by the partial order < on & becomes to be the idempotent of
lower user in the level of class. Thus, the possibility of finding the key
K is equal to all users.

4. In addition, if Ei, < Ey,, where Ex, = [k1,7] and Ej, = [ko,7], then
ki is a divisor of ko, which means that a user in Uz of the lower class in
Step 3 is able to calculate the ideal Ej, by factoring ko of the upper class.
Consequently, the meaning of the level of information security will be

lost under the multilevel cryptosystem based on the Clifford semigroup.

5. Conclusion

A cryptographic scheme for enforcing multilevel security in a system
where hierarchy is represented by a partially ordered set was introduced
by Akl et al. They generate the keys K; relying on the fundamental as-
sumption behind the RSA. But the key generation algorithm of Akl et

al. is infeasible when there is a large number of users. To overcome this
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shortage, in 1985, MacKinnon et al. proposed a paper containing a con-
dition which prevents cooperative attacks and optimizes the assignment.
In 2005, Kim et al. proposed key management systems for multilevel
security using one-way hash function, RSA algorithm, Poset dimension
and Clifford semigroup in the context of modern cryptography. In par-
ticular, the key management system in [8] using Clifford semigroup of
imaginary quadratic non-maximal orders is based on the fact that the
computation of a key ideal Ky from an ideal EKj seems to be difficult
unless F is equivalent to O. Using the properties of commutative semi-
lattice of idempotents, in this paper, we show that computing preimages
of the key ideal Ky under the bonding homomorphism is not difficult,
and that the multilevel cryptosystem based on the Clifford semigroup is

insecure and improper to the key management system.
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