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A COUNTEREXAMPLE TO THE WIENER TYPE
CRITERION FOR REGULAR BOUNDARY POINTS

JEONG KYUN KiM AND JoNG JIN KIM

Abstract. We will investigate whether Jucha’s result on the Zal-

cman type domain can be extended to an arbitrary domain in C.

1. Introduction

Let E be the unit disk in C, the complex plane. For a bounded
domain D C C and 2y € 8D, 2 is regular (with respect to the Dirichlet
problem) for D if there exists a neighbourhood U of 2y and u, which is
subharmonic on D, with u < 0 on UND such that imynps -2, u(z) = 0.
This function u is called a barrier at zy. If every 25 € 0D is regular, then

D is called a regular domain.

We denote by £3(D) the space of all square integrable functions on
D c C" which are holomorphic. Note that £2(D) becomes a Hilbert
space with the inner product (-,)p induced from the £2(D). Let || f|lp
denote the standard norm of the function f € £2(D). The point evalua-
tion functional £2(D) 3 f — f(w) € C(w € D) is continuous. By Riesz
representation theorem, there exists Kp(-,w) € £(D) such that

fw) ={f,Kp(,w))p, weD,
for all f € L%(D). We call the function kp(z) := Kp(z, z) the Bergman
function for D.
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Let D be a domain in C™ with zyp € 0D. We say that D is Bergman
exhaustive at zg if lim,_,,, kp(z) = co. We call D Bergman ezhaustive
if D is Bergman exhaustive at each zg € dD. Recall that every regular

domain in C is Bergman exhaustive([4],[2]).

Next we introduce some basic notions from the plane potential theory
used in this paper. Let P(K) be the set of all probability Borel measures
with their supports included in a compact set K C C™. We define the
logarithmic potential p,, of a measure pu € P(K)

pu(z) = / log |z — w|dpu(w), =z€C.
K

Then p, is subharmonic on C and p,|c\x is a harmonic function. To

any such a pu, its energy is defined by

1) = [ pue)dntz) = [ [ 108z~ wldu(2)du(w)

A measure v € P(K) is called the equilibrium measure of the compact
set K if
I(v) =sup{I(p) : p € P(K)}.

By SH we denoted the symbol for the set of all subharmonic func-
tions. A set F C C is polar if there is u € SH(C) such that u # —oo
and F C {u = —oo}. It is well-known that the equilibrium measure
exists and is unique if K is compact, not polar set([5]). The logarithmic

capacity of a set E C C is the number

cap(E) := exp(sup{I(u) : p € P(K), K is a compact subset of E}).

REMARK. (1) If Ey C Ey then cap(E) < cap(E»).

(2) cap(A(\, 7)) = cap(8A(A, 7)) = r, where A(z,r) :={z€C: |z~
x| < r}; for any compact K C C, we have cap(K) < diam(K)/2,cap(K) =
cap(0K); moreover, if K is connected, then diam(K)/4 < cap(K).
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2. The Zalcman type domains

Let us consider a following type of planar domains. Put

() D:=FE\ (U (@i, Tk U{0}>

where limg_,oo zx = 0, A(zy,7:) C E and A(zg, ) N Az, 7)) = 0, for
k # [. This domain is called a Zalcman type domain. Note that each
boundary point zg # 0 of D is regular. So, if 0 € D is regular, then D
is a regular domain.

In C, there is a necessary and sufficient condition for Bergman exhaus-
tiveness. For this, we begin by defining the potential theoretic function.
For a bounded domain D C C, define v : D — [0, 0c] by

dé
§3(—logcap(A(z,0) \ D))’

vp(2) :=

~p is lower semicontinuous on D([6]). In 2002, W. Zwonek discovered

the following relation between yp and the Bergman exhaustiveness([6]).

Theorem 1 Let D be a bounded domain in C and let zq € 8D. Then

Dahm vp(z) = 00 & D is Bergman exhaustive at z.
Z—2zp

Using the Theorem 1, Jucha gave a description of some Zalcman type

domains, as follows([3]).
Theorem 2 Let D be a domain given by (1). Assume that there
exist 01,02 € (0,1) such that

Tk+1
Tk

0, <

<, k>1

Then D is Bergman exhaustive iff D is Bergman exhaustive at 0 iff
vp(0) = oo iff

o
z:l z? log .
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3. Main Results

In this chapter we will consider a question naturally induced from
Jucha’s result(Theorem 2). More precisely, we will discuss whether
Jucha’s result on the Zalcman type domain can be extended to a general

domain in C. Here we shall give a partially affirmative answer.

Theorem 3 Let D be a bounded domain in C and zg € 8D. Assume
that there exists a sequence {zx}32, C C\ D with zx — 2zq and 6,0, €
(0,1) such that

els%sem k> 1.
If
- 1
®) Z |zx — 20|2(— log dist(zx,0D)) °

k=1
where dist(z,0D) = inf{|z — z| : x € 0D}, then vp(zp) = oco. In partic-

ular, D is Bergman exhaustive at zy.

Proof. Without loss of generality, we may assume that D € %E,
zo =0and {z}52, C %E Let t) := |2x| and & = dist(zx, D), for each
k € N. Then

i 1
713(0)=/0 53(_1ogcap(Z(0,5)\D))d5

t
1

> — dé

kz=:1 /tk+1 53(_ IOg Cap(A(()?(s) \ D))

ad 1
> tr — 1
> kz::l( k k+1)t%(—log T5ert)

— 1 tk+1> 1
> -11-
- ; 2 ( tr tz(— 10g5k+1)

>§:1(1 6,) 6? 1
T2 2 t2y1 —logdry

E
Il
fal




A Counterexample to the Wiener type criterion for regular boundary points 217

Here C' > 0 is some constant. Second inequality follows from the fact
that, for § € [zxt1, 2k,
1 1 —
A (Zk-H - §5k+1, §5k+1> C A(0,6)\ D
and the capacity of a disk is just the radius.
Since vp is lower semicontinuous on D, we have
lim vp(z) = 0.

‘ D3z—2zg
Hence, in view of Theorem 1, D is Bergman exhaustive at zg. O

Note that in the proof of Theorem 1 we used the following conven-
tions:
1F = {3¢ | ¢ € E} and we mean by D € 3E that D is relatively

compact subset of %E

REMARK. Let D be a domain given by (1) and zg = 0. Then (1) is

Z < 2} log e

We thus obtain the necessary condition of Theorem 2.

equivalent to

But the next theorem implies that Theorem 2 cannot be extended to

an arbitrary domain in C.
Theorem 4 Forn € N

— 1 1 2n,_2 2n, .2
F, = {ze(C ST <Rez<§;, —exp(—2°"n®) <Imz < exp(—2°"n*)

Define
1 o0
D:=3E\ (gan U {o}) :

Then D is Bergman exhaustive at 0 and for any sequence {zx}%2, C
C\ D with z;, — 0 and 252l <9 < 1, we have

ekl

1
< .
;|2kl2(—logdist(zk,aD)) 0
Furthermore, vp(0) = cc.
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Proof. First, to prove vp(0) = oo, it suffices to show that there exists
a barrier at 0. Let 0 < ¢ <« 1. Consider a mapping D N A(0,¢) >
z + logz € C. Then logz # 0 since ¢ is sufficiently small. So loéz €
O(D N A(0,¢€)). We can define a harmonic function h on D N A(0, €) by
1 1
h(z) = Re( ) _ ol

log z | log z|?

Observe that
log | 2| S 1

|log z|* ~ log|z|

h(z) =
as z — 0. Thus the function A is a barrier at 0.
Without loss of generality, we may assume that {z;}$2, C UF,. For

each zy, there is an n € N with z; € F,. From the definition of F,,, we

have

1 <4.9m 1 4
|2k |2(— log dist(zk, 0D)) ~ —logexp(—22"n2)  n2’

From this we obtain

E : <C —
o1 |z |2(— log dist(z, D)) ~ ngl n2 < 00,

where C is a constant such that C > #{m € N: ™1 € [1/2,1]}.

Furthermore we have

/ a5
83( —logcapA(O )\ D)

-y /_k : s
e 83(—log capA(0,6) \ D)

k=1
1 g 1
>
- ;:: 9k+1 —log cap(Fi+2)
o0 o0
93k 1 2
22 =Ca) =

Here C; and C5 are some positive constants. O
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