A COUNTEREXAMPLE TO THE WIENER TYPE CRITERION FOR REGULAR BOUNDARY POINTS

JEONG KYUN KIM AND JONG JIN KIM

Abstract. We will investigate whether Jucha's result on the Zalcman type domain can be extended to an arbitrary domain in \mathbb{C} .

1. Introduction

Let E be the unit disk in \mathbb{C} , the complex plane. For a bounded domain $D \subset \mathbb{C}$ and $z_0 \in \partial D$, z_0 is regular (with respect to the Dirichlet problem) for D if there exists a neighbourhood U of z_0 and u, which is subharmonic on D, with u < 0 on $U \cap D$ such that $\lim_{U \cap D \ni z \to z_0} u(z) = 0$. This function u is called a barrier at z_0 . If every $z_0 \in \partial D$ is regular, then D is called a regular domain.

We denote by $\mathcal{L}_h^2(D)$ the space of all square integrable functions on $D \subset \mathbb{C}^n$ which are holomorphic. Note that $\mathcal{L}_h^2(D)$ becomes a Hilbert space with the inner product $\langle \cdot, \cdot \rangle_D$ induced from the $\mathcal{L}^2(D)$. Let $||f||_D$ denote the standard norm of the function $f \in \mathcal{L}^2(D)$. The point evaluation functional $\mathcal{L}_h^2(D) \ni f \mapsto f(w) \in \mathbb{C}(w \in D)$ is continuous. By Riesz representation theorem, there exists $K_D(\cdot, w) \in \mathcal{L}_h^2(D)$ such that

$$f(w) = \langle f, K_D(\cdot, w) \rangle_D, \quad w \in D,$$

for all $f \in \mathcal{L}^2_h(D)$. We call the function $k_D(z) := K_D(z,z)$ the Bergman function for D.

Received April 28, 2006. Revised June 16, 2006.

2000 Mathematics Subject Classification: 31A15, 30C40, 32A25.

Key words and phrases : Bergman exhaustiveness, logarithmic capacity.

Let D be a domain in \mathbb{C}^n with $z_0 \in \partial D$. We say that D is Bergman exhaustive at z_0 if $\lim_{z\to z_0} k_D(z) = \infty$. We call D Bergman exhaustive if D is Bergman exhaustive at each $z_0 \in \partial D$. Recall that every regular domain in \mathbb{C} is Bergman exhaustive([4],[2]).

Next we introduce some basic notions from the plane potential theory used in this paper. Let $\mathcal{P}(K)$ be the set of all probability Borel measures with their supports included in a compact set $K \subset \mathbb{C}^n$. We define the logarithmic potential p_{μ} of a measure $\mu \in \mathcal{P}(K)$

$$p_{\mu}(z) := \int_{\mathcal{K}} \log|z - w| d\mu(w), \quad z \in \mathbb{C}.$$

Then p_{μ} is subharmonic on \mathbb{C} and $p_{\mu}|_{\mathbb{C}\setminus K}$ is a harmonic function. To any such a μ , its energy is defined by

$$I(\mu) := \int_K p_\mu(z) d\mu(z) = \int_K \int_K \log|z-w| d\mu(z) d\mu(w).$$

A measure $\nu \in \mathcal{P}(K)$ is called the equilibrium measure of the compact set K if

$$I(\nu) = \sup\{I(\mu) : \mu \in \mathcal{P}(K)\}.$$

By \mathcal{SH} we denoted the symbol for the set of all subharmonic functions. A set $F \subset \mathbb{C}$ is *polar* if there is $u \in \mathcal{SH}(\mathbb{C})$ such that $u \not\equiv -\infty$ and $F \subset \{u = -\infty\}$. It is well-known that the equilibrium measure exists and is unique if K is compact, not polar set([5]). The logarithmic capacity of a set $E \subset \mathbb{C}$ is the number

$$cap(E) := exp(sup\{I(\mu) : \mu \in \mathcal{P}(K), K \text{ is a compact subset of } E\}).$$

REMARK. (1) If $E_1 \subset E_2$ then $cap(E_1) \leq cap(E_2)$.

(2) $\operatorname{cap}(\Delta(\lambda, r)) = \operatorname{cap}(\partial \Delta(\lambda, r)) = r$, where $\Delta(x, r) := \{z \in \mathbb{C} : |z - x| < r\}$; for any compact $K \subset \mathbb{C}$, we have $\operatorname{cap}(K) \le \operatorname{diam}(K)/2$, $\operatorname{cap}(K) = \operatorname{cap}(\partial K)$; moreover, if K is connected, then $\operatorname{diam}(K)/4 \le \operatorname{cap}(K)$.

2. The Zalcman type domains

Let us consider a following type of planar domains. Put

(†)
$$D := E \setminus \left(\bigcup_{k=1}^{\infty} \overline{\Delta}(x_k, r_k) \cup \{0\} \right),$$

where $\lim_{k\to\infty} x_k = 0$, $\overline{\Delta}(x_k, r_k) \subset E$ and $\overline{\Delta}(x_k, r_k) \cap \overline{\Delta}(x_l, r_l) = \emptyset$, for $k \neq l$. This domain is called a *Zalcman type* domain. Note that each boundary point $z_0 \neq 0$ of D is regular. So, if $0 \in D$ is regular, then D is a regular domain.

In \mathbb{C} , there is a necessary and sufficient condition for Bergman exhaustiveness. For this, we begin by defining the potential theoretic function. For a bounded domain $D \subset \mathbb{C}$, define $\gamma : \overline{D} \longrightarrow [0, \infty]$ by

$$\gamma_D(z) := \int_0^{\frac{1}{2}} \frac{d\delta}{\delta^3(-\log \operatorname{cap}(\overline{\Delta}(z,\delta) \setminus D))}.$$

 γ_D is lower semicontinuous on $\overline{D}([6])$. In 2002, W. Zwonek discovered the following relation between γ_D and the Bergman exhaustiveness([6]).

Theorem 1 Let D be a bounded domain in \mathbb{C} and let $z_0 \in \partial D$. Then

$$\lim_{D\ni z\to z_0} \gamma_D(z) = \infty \Leftrightarrow D \text{ is Bergman exhaustive at } z_0.$$

Using the Theorem 1, Jucha gave a description of some Zalcman type domains, as follows([3]).

Theorem 2 Let D be a domain given by (\dagger) . Assume that there exist $\theta_1, \theta_2 \in (0,1)$ such that

$$\theta_1 \le \frac{x_{k+1}}{x_k} \le \theta_2, \quad k \ge 1.$$

Then D is Bergman exhaustive iff D is Bergman exhaustive at 0 iff $\gamma_D(0) = \infty$ iff

$$\sum_{k=1}^{\infty} \frac{-1}{x_k^2 \log r_k} = \infty.$$

3. Main Results

In this chapter we will consider a question naturally induced from Jucha's result(Theorem 2). More precisely, we will discuss whether Jucha's result on the Zalcman type domain can be extended to a general domain in \mathbb{C} . Here we shall give a partially affirmative answer.

Theorem 3 Let D be a bounded domain in \mathbb{C} and $z_0 \in \partial D$. Assume that there exists a sequence $\{z_k\}_{k=1}^{\infty} \subset \mathbb{C} \setminus \overline{D}$ with $z_k \to z_0$ and $\theta_1, \theta_2 \in (0,1)$ such that

$$\theta_1 \le \frac{|z_{k+1} - z_0|}{|z_k - z_0|} \le \theta_2, \ k \ge 1.$$

If

$$(\ddagger) \qquad \sum_{k=1}^{\infty} \frac{1}{|z_k - z_0|^2 (-\log \operatorname{dist}(z_k, \partial D))} = \infty,$$

where $\operatorname{dist}(z, \partial D) = \inf\{|z - x| : x \in \partial D\}$, then $\gamma_D(z_0) = \infty$. In particular, D is Bergman exhaustive at z_0 .

Proof. Without loss of generality, we may assume that $D \in \frac{1}{2}E$, $z_0 = 0$ and $\{z_k\}_{k=1}^{\infty} \subset \frac{1}{2}E$. Let $t_k := |z_k|$ and $\delta_k = \operatorname{dist}(z_k, \partial D)$, for each $k \in \mathbb{N}$. Then

$$\gamma_{D}(0) = \int_{0}^{\frac{1}{2}} \frac{1}{\delta^{3}(-\log \operatorname{cap}(\overline{\Delta}(0,\delta) \setminus D))} d\delta$$

$$\geq \sum_{k=1}^{\infty} \int_{t_{k+1}}^{t_{k}} \frac{1}{\delta^{3}(-\log \operatorname{cap}(\overline{\Delta}(0,\delta) \setminus D))} d\delta$$

$$\geq \sum_{k=1}^{\infty} (t_{k} - t_{k+1}) \frac{1}{t_{k}^{3}(-\log \frac{1}{2}\delta_{k+1})}$$

$$\geq \sum_{k=1}^{\infty} \frac{1}{2} \left(1 - \frac{t_{k+1}}{t_{k}}\right) \frac{1}{t_{k}^{2}(-\log \delta_{k+1})}$$

$$\geq \sum_{k=1}^{\infty} \frac{1}{2} (1 - \theta_{2}) \frac{\theta_{1}^{2}}{t_{k+1}^{2}} \frac{1}{-\log \delta_{k+1}}$$

$$= C \sum_{k=1}^{\infty} \frac{1}{t_{k+1}^{2}(-\log \delta_{k+1})}.$$

Here C > 0 is some constant. Second inequality follows from the fact that, for $\delta \in [x_{k+1}, x_k]$,

$$\Delta\left(z_{k+1} - \frac{1}{2}\delta_{k+1}, \frac{1}{2}\delta_{k+1}\right) \subset \overline{\Delta}(0, \delta) \setminus D$$

and the capacity of a disk is just the radius.

Since γ_D is lower semicontinuous on \overline{D} , we have

$$\lim_{D\ni z\to z_0}\gamma_D(z)=\infty.$$

Hence, in view of Theorem 1, D is Bergman exhaustive at z_0 .

Note that in the proof of Theorem 1 we used the following conventions:

 $\frac{1}{2}E := \{\frac{1}{2}\zeta \mid \zeta \in E\}$ and we mean by $D \subseteq \frac{1}{2}E$ that D is relatively compact subset of $\frac{1}{2}E$.

REMARK. Let D be a domain given by (\dagger) and $z_0 = 0$. Then (\ddagger) is equivalent to

$$\sum_{k=1}^{\infty} \frac{-1}{x_k^2 \log r_k} = \infty.$$

We thus obtain the necessary condition of Theorem 2.

But the next theorem implies that Theorem 2 cannot be extended to an arbitrary domain in \mathbb{C} .

Theorem 4 For $n \in \mathbb{N}$

$$F_n := \left\{ z \in \mathbb{C} : \frac{1}{2^{n+1}} \le \operatorname{Re} z \le \frac{1}{2^n}, - \exp(-2^{2n}n^2) \le \operatorname{Im} z \le \exp(-2^{2n}n^2) \right\}$$

Define

$$D := \frac{1}{2}E \setminus \left(\bigcup_{n=1}^{\infty} F_n \cup \{0\}\right).$$

Then D is Bergman exhaustive at 0 and for any sequence $\{z_k\}_{k=1}^{\infty} \subset \mathbb{C} \setminus \overline{D}$ with $z_k \to 0$ and $\frac{|z_{k+1}|}{|z_k|} \leq \theta < 1$, we have

$$\sum_{k=1}^{\infty} \frac{1}{|z_k|^2 (-\log \operatorname{dist}(z_k, \partial D))} < \infty.$$

Furthermore, $\gamma_D(0) = \infty$.

Proof. First, to prove $\gamma_D(0) = \infty$, it suffices to show that there exists a barrier at 0. Let $0 < \epsilon \ll 1$. Consider a mapping $D \cap \Delta(0, \epsilon) \ni z \mapsto \log z \in \mathbb{C}$. Then $\log z \neq 0$ since ϵ is sufficiently small. So $\frac{1}{\log z} \in \mathcal{O}(D \cap \Delta(0, \epsilon))$. We can define a harmonic function h on $D \cap \Delta(0, \epsilon)$ by

$$h(z) := \operatorname{Re}\left(\frac{1}{\log z}\right) = \frac{\log|z|}{|\log z|^2} < 0.$$

Observe that

$$h(z) = \frac{\log|z|}{|\log z|^2} \ge \frac{1}{\log|z|} \longrightarrow 0,$$

as $z \to 0$. Thus the function h is a barrier at 0.

Without loss of generality, we may assume that $\{z_k\}_{k=1}^{\infty} \subset \cup F_n$. For each z_k , there is an $n \in \mathbb{N}$ with $z_k \in F_n$. From the definition of F_n , we have

$$\frac{1}{|z_k|^2(-\log \operatorname{dist}(z_k, \partial D))} \le 4 \cdot 2^{2n} \frac{1}{-\log \exp(-2^{2n}n^2)} = \frac{4}{n^2}.$$

From this we obtain

$$\sum_{k=1}^{\infty} \frac{1}{|z_k|^2 (-\log \operatorname{dist}(z_k, \partial D))} \le C \sum_{n=1}^{\infty} \frac{4}{n^2} < \infty,$$

where C is a constant such that $C > \#\{m \in \mathbb{N} : \theta^{m-1} \in [1/2, 1]\}.$

Furthermore we have

$$\gamma_{D}(0) = \int_{0}^{\frac{1}{2}} \frac{1}{\delta^{3}(-\log \overline{\Delta}(0,\delta) \setminus D)} d\delta$$

$$= \sum_{k=1}^{\infty} \int_{\frac{1}{2^{k+1}}}^{\frac{1}{2^{k}}} \frac{1}{\delta^{3}(-\log \overline{\Delta}(0,\delta) \setminus D)} d\delta$$

$$\geq \sum_{k=1}^{\infty} \frac{1}{2^{k+1}} 2^{3k} \frac{1}{-\log \overline{\Delta}(F_{k+2})}$$

$$\geq \sum_{k=1}^{\infty} \frac{2^{3k}}{2^{k+1}} \frac{1}{-\log(C_{1}2^{k+2})} = C_{2} \sum_{k=1}^{\infty} \frac{2^{2k}}{k} = \infty.$$

Here C_1 and C_2 are some positive constants.

References

- [1] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis,, Walter de Gruyter, 1993.
- [2] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis-revisited, Dissertation Math. 430 (2005).
- [3] P. Jucha, Bergman completeness of Zalcman type domains, Studia Math. 163 (2004), 71-83.
- [4] T. Ohaswa, On the Bergman kernel of hyperconvex domains, Nagoya Math. J. 129 (1993), 43-59.
- [5] T. Ransford, Potential theory in the complex plane, London Math. Soc. Students Texts 28 Cambridge Press, 1995.
- [6] W. Zwonek, Wiener's type criterion for Bergman exhaustiveness, Bull. Pol. Acad. Math. 50(3) (2002), 297-312.

Jong Jin Kim
Department of Mathematics
Chonbuk National University
Chonju, 561-756, Korea
Email: jjkim@chonbuk.ac.kr

Jeong Kyun Kim
Department of Mathematics
Chonbuk National University
Chonju, 561-756, Korea

Email: jgkim911@dreamwiz.com