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ACZEL-CHUNG FUNCTIONAL EQUATION IN ALMOST
EVERYWHERE SENSE

JAEYOUNG CHUNG

Abstract. We consider an n-dimensional version of the functional

equation of Aczél and Chung in almost everywhere sense.

1. Introduction

In this article we consider an n-dimensional version of the functional

equation of Aczél and Chung|2]

l m

(1.1) Z (z+Bjy) = Y gx(2)hx(y),

j=1 k=1

in almost everywhere sense, where f;, g, hy : R* — C and §; € R™ for
J=1...,L,k=1,...,m. For B; = (B1,---,8jn), ¥y = (Y1,-..,Yn) €
R™ we denote by 8; y = (8,191, - - -, Bjn¥n) and Bj_l = ( ;11, ey ]'71), j=
.,1. Similarly as in [2] we assume that §;, # 0 and §;, # B;, for
allp=1,...,n,i#j,i,j=1,...,1L
As a result, following the approach as in [5] we find the locally inte-

grable solutions of the equation (1.1).
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2. Convolutional approach to the equation of Aczél and Chung

In this section we consider the equation (1.1). Here we impose the
natural condition that {g1,...,gm} and {h1,...,hm} are linearly inde-
pendent without which the number of the functions in the righthand
side of the equation (1.1) can be reduced to a smaller one. We denote

by L},.(R™) the space of all locally integrable functions on R™.

Theorem 2.1. Let f;, gk, hi € L}OC(R"), ji=1,...,, k=1,...,m,
satisfy the equation (1.1) a.e. (z,y) € R*™. Then f;(z) = E(m), gk(z) =
gr(z), hi(z) = Ek(m),j =1,..,l, k=1,...,m, a.e. v € R"*, where
fj s Ok, ’Fbk, j=1,...,1, k=1,...,m, is a smooth solution of the equa-

tion
l

S iz +By) = Y Ge(@)he(y), =,y €R™
k=1

Proof. Consider a nonnegative function 1 € C°°(R") such that
Jgn ¥(x)dz = 1 and suppy C {z € R™ : [z] < 1}. We denote the
functlon Yi(z) = t'"w(a:/t) t > 0. Let f € L} (R™). Note that for
each t > 0, (f * ) (z) :== [ f(y)¢¥r(z — y)dy is a smooth function in R™
and (f*¢y)(z) — f(x ) a.e. ast— 07. Convolving the tensor product
Yi(z)s(y) in each side of (1.1) we have, for j = 1,...,1,

[fi(z + Bjy) * (We(z)¥s(¥))](E, 1)
- / / £i(@ + Bi) (€ — 2)pa(n — v)da dy

://fj(-’z)wt(£—$+ﬂjy)¢s(n_y)dyd$
_—_//f](l')d)t (f—l‘+y)1/)sﬂj (Bin—y) dydz

- //fj(x)(wtws,gj)(gwjn—x) s
= (fj * s % s,5,)(§ + 65 )
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where ;5. (z) = (Bj1 - 'Bj,n>‘1’¢s(5j_11‘)- Similarly we have, for k =

1,...,m,

(9 (2) () * (Pe(2)%s (W)I(E, 1) = (g * ¥ ) (€) (B * %s) (7).

Thus the equation (1.1) is converted to the following functional equation

(2.1) F(z,y,t,s) = in(I, t) He(y, )
where B

(2.2) F(z,y,t,s) =i1 i * e x Y5 5,) (@ + B5y),
(2.3) Gi(z,t) = (gk]*_¢t)($)a Hi(y,s) = (hx * 1) (1),

fork=1,...,m. Wefirst prove that forallk = 1,...,m, lim,_ g+ Gi(z, 1)
are smooth functions and equal to gy(z), a. e. z € R™. We use math-
ematical induction on m. Note that lim; ,o+ F'(z,y,t,s) is a smooth
function of z for each y € R®, s > 0 and {Hi,...,H,} is linearly in-
dependent. For m = 1, we can choose y; € R", s; > 0 such that
Hi(y1,51) == a1 # 0. Then we can write

-1
tl_lglJr Gi(z,t) = t1_1.1(1)1+ a; F(z,y1,t,81)

l
arm > (fi * sy 8,)(x + Bi 1)
7=1

Thus g1(x) := lim;_,q+ G1(z,t) is a smooth function. Now choose y, €
R", sm > 0 such that Hyn(ym, Sm) := am # 0. Then it follows from (2.1)
that

m—1
(2.4) Gm(z,t) = a} <F(:c,ym,t, Sm) — Z bk Gi(z, t))
k=1

where by = Hi(ym,sm), k=1,...,m—1. Putting (2.4) in (2.1) we have

m—1
(2.5) (z,y,t,8) = Zka t)H; (y, s)
k=1
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where
(2.6) F*(z,y,t,8) = F(z,y,t,8) — a,_an(a:,ym,t, sm)Hm(y, 5),
(2.7) H}(y,s) = Hi(y,s) — albp H(y,s), k=1,...,m— 1.

Since lim;_,o+ F(z,y,t, ) is a smooth function of = for each y € R", s >
0 and {Hi,...,Hy} is linearly independent, it follows from (2.6) and
(2.7) that

(2.8) lim F*(z,y,t,s)

t—0+

is a smooth function of = for each y € R", s > 0 and
(29) {H{""’H:;L—l}

is linearly independent. Assume that the conditions (2.8) and (2.9)
imply that Gg(z,t) converges locally uniformly to a smooth function
gr(z) for 1 < k < m — 1. Then by induction and the equation (2.4),
Gm(z,t) converges locally uniformly to a smooth function gp,(z). This
proves the assertion. Changing the roles of G and Hy, we obtain that
forallk=1,...,m, Ek(y) := lim,_, o+ Hy(y, s) are smooth functions and
hi =I~zk. a. e. ¢ €R™

Now we consider the regularity of the initial value of the right hand
side of the equation (2.2). In (1.1), letting s — 0%, replacing = by
z — By, multiplying 9s(y) and integrating with respect to y we have,
fori=1,...,1
(2.10)

m
(fixthe)(z) = — Z(fj*wt*ws,ﬁj-ﬂ,-)(xHZ/Gk(w—ﬂiy, ) () (y) dy.
i k=1

It follows from (2.10) and the locally uniform convergence of Gy that
each (f; x¢¢)(z), i = 1,...,l, converges locally uniformly to a smooth
function fi(z) as t — 0F. Finally, letting s — 0% and t — 0 in (2.1)
and (2.2) we see that fj, Ik, Tzk, j=1,...,1, k=1,...,mis a smooth
solution of classical version of the equation (1.1). This completes the

proof. a
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Combined with the result of Aczél and Chung|2] we have the following

as a consequence of the above result.

Corollary 2.2. Every solution f;(z), gk(z), he(z) € L. (R), j =
1, k=1,...,m, of the equation (1.1) for the dimension n = 1 has

the form of exponential polynomials

for almost everywhere r € R.

Examples. The well known Cauchy functional equations, Pexider
equations, Jensen equations and quadratic functional equations are typ-
ical examples of the form (1.1). In addition to the equations, as conse-

quences of our result the solutions of the equations

(211)  f(z+y) + f(z - y) - 2f(2) — 29(y) = 0, a.e. (z,y) € R™
(212)  flz+y)+ flz—y) - 2f(2)f(y) =0, a.e. (z,y) € R™
(2.13)  flz+y)+ flz—y) - 2f(x)g(y) =0, a.e. (z,y) € R™"

(214) 1 (“;y-) .y (””;y) —4@)g(y) =0, a.e. (z,y) €K

(2.15)  f(z—y) — f(2)f(y) — 9(z)g(y) =0, a.e. (z,y) € R*"

are equal almost everywhere x to smooth solutions of the corresponding
classical functional equations, which can be found using induction for

the dimension n. Thus the solutions of the above equations are given,
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respectively, by

(2.16)
9(z) = Z Qjk T;Ti, a.e. T € R”
1<j<k<n
n
f(l'): Z ajkxjmk+§:bjmj+d, a.e. z€R"
1<j<k<n =1
(2.17)
f(z) = cos(arzy + -+ + AnZn), a.€. T € R"
(2.18)

9(x) = cos(a1z1 + - -+ + anzy), a.e. z € R"
f(z) = crcos(a1z1 + -+ + anzp) + cosin(ayzy + - + UnTn), a.€. T € R™

(2.19)
g(q;) = csin(all‘l +--- 4+ G,nxn), a.e. r € Rn

f(z) = c?sin®(ayzq + - + anZn) +d, a.e. x €R"
or

g(z) =a1z1+ - +apz,, a.e. €R"

f(@)=(az1+  +anz,)? +d, a.e. z€R"

(2.20)
g(z) = tsin(ayz; + - + anTy), a.e. € R"®

f(z) =cos(a1z1 + - + anzy), a.e. z€R

where = (z1,...,%,) and all the coefficients are complex numbers.
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