ON πgs -CLOSED SETS IN TOPOLOGICAL SPACES

Bu Young Lee, Su-Young Shin and Jin Han Park*

Abstract. In this paper a new class of sets called πgs -closed sets is introduced and its properties are studied. Further the notions of πgs - $T_{1/2}$ spaces and πgs -continuity are introduced.

1. Introduction and preliminaries

Levine [18] initiated the investigation of so-called g-closed sets in topological spaces, since then many modifications of g-closed sets were defined and investigated by many authors. Arya and Nour [2] defined gs-closed sets and studied some of their properties and obtained characterizations of s-normal spaces due to Maheswari and Prasad [19]. This notion is generalization of semiclosed sets which were further studied by Devi, Maki and Balachandran [9,10,21], Park [27] and Caldas [5]. On the other hand, Zaitsev [31] introduced the concept of π -closed sets and a class of topological spaces called quasi-normal spaces. Recently, Dontchev and Noiri [13] defined the concept of πg -closed sets as a weak form of g-closed sets and used this notion to obtain a characterization and some preservation theorems for quasi-normal spaces. In this paper, we introduce the concept of πgs -closed sets which implied by both that of πg -closed sets and gs-closed sets and study its basic properties.

Received March 6, 2006. Revised June 15, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 54C08, 54D10.

Key words and phrases : πgs -closed sets, πgs - $T_{1/2}$ spaces, πgs -continuous functions.

[†] This research was supported by the Dong-A University Research Grant in 2003.

^{*}Corresponding author.

We introduce a new class of topological spaces called πgs - $T_{1/2}$ spaces and show that the relationships among πgs - $T_{1/2}$ spaces, preregular $T_{1/2}$ spaces due to Gnanambal [14] and semi-pre- $T_{1/2}$ spaces due to Dontchev [12]. Moreover, the notions of πgs -continuity and πgs -irresoluteness are introduced and studied.

Throughout this paper, spaces (X,τ) and (Y,σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and the interior of A are denoted by $\operatorname{cl}(A)$ and $\operatorname{int}(A)$, respectively. A subset A is said to be regular open (resp. regular closed) if $A = \operatorname{int}(\operatorname{cl}(A))$ (resp. $A = \operatorname{cl}(\operatorname{int}(A))$). A point $x \in X$ is called a δ -cluster point [30] of A if $A \cap U \neq \emptyset$ for every regular open set containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $\operatorname{cl}_{\delta}(A)$. If $\operatorname{cl}_{\delta}(A) = A$, then A is called δ -closed [30]. The complement of a δ -closed set is said to be δ -open [30]. The finite union of regular open sets is said to be π -open [31]. The complement of a π -open set is said to be π -closed [31].

A subset A is to be semiopen [17] (resp. α -open [24], preopen[23], semi-preopen [1]) if $A \subset \operatorname{cl}(\operatorname{int}(A))$ (resp. $A \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$, $A \subset \operatorname{int}(\operatorname{cl}(A))$, $A \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$) and the complement of a semiopen (resp. α -open, preopen, semi-preopen) set is called semiclosed (resp. α -closed, preclosed, semi-preclosed). The intersection of all semiclosed (resp. preclosed, semi-preclosed) sets containing A is called the semi-closure [7] (resp. preclosure [23], semi-preclosure [1]) of A and is denoted by $\operatorname{scl}(A)$ (resp. $\operatorname{pcl}(A)$, $\operatorname{spcl}(A)$). The semi-interior [7] (resp. preinterior[23]) of A is defined to be the union of all semiopen (resp. preopen) sets contained in A and is denoted by $\operatorname{sint}(A)$ (resp. $\operatorname{pint}(A)$). Note that $\operatorname{scl}(A) = A \cup \operatorname{int}(\operatorname{cl}(A))$ and $\operatorname{sint}(A) = A \cap \operatorname{cl}(\operatorname{int}(A))$.

We recall the following definitions used in sequel.

Definition 1.1 A subset A of a space X is said to be:

- (a) g-closed [18] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X;
- (b) πg -closed [13] if $\operatorname{cl}(A) \subset U$ whenever $A \subset U$ and U is π -open in X;
 - (c) gs-closed [2] if $scl(A) \subset U$ whenever $A \subset U$ and U is open in X;
- (d) gsp-closed [12] if $spcl(A) \subset U$ whenever $A \subset U$ and U is open in X;
- (e) rg-closed [26] if $\operatorname{cl}(A) \subset U$ whenever $A \subset U$ and U is regular open in X:
- (f) gpr-closed [14] if $pcl(A) \subset U$ whenever $A \subset U$ and U is regular open in X;
- (g) πgp -closed [28] if $\operatorname{pcl}(A) \subset U$ whenever $A \subset U$ and U is π -open in X;
- (h) g-open (resp. πg -open, gs-open, gsp-open, rg-open, πgp -open) if the complement of A is g-closed (resp. πg -closed, gs-closed, gsp-closed, rg-closed, πgp -closed).

Definition 1.2 A function $f:(X,\tau)\to (Y,\sigma)$ is called:

- (a) semi-continuous [17] (resp. irresolute [8]) if $f^{-1}(V)$ is semiclosed in X for every closed (resp. semiclosed) set V of Y;
- (b) g-continuous [3] (resp. rg-continuous [26]) if $f^{-1}(V)$ is g-closed (resp. rg-closed) in X for every closed set V of Y;
- (c) gs-continuous [10] (resp. gs-irresolute [10]) if $f^{-1}(V)$ is gs-closed in X for every closed (resp. gs-closed) set V of Y;
- (d) πg -continuous [13] (resp. almost π -continuous [13]) if $f^{-1}(V)$ is πg -closed (resp. π -closed) in X for every closed (resp. regular closed) set V of Y;
- (e) presemiclosed [8] (resp. presemiopen [8], rc-preserving [15]) if f(F) is semiclosed (resp. semiopen, regular closed) in Y for every semiclosed (resp. semiopen, regular closed) set F of X.

Definition 1.3 A space (X, τ) is called:

- (a) $T_{1/2}$ [18] if every g-closed set is closed;
- (b) semi-pre- $T_{1/2}$ [12] if every gsp-closed set is semi-preclosed;

- (c) preregular $T_{1/2}$ [14] if every gpr-closed set is preclosed;
- (d) πgp - $T_{1/2}$ [28] if every πgp -closed set is preclosed.

2. Basic properties of πgs -closed sets

Definition 2.1 A subset A of a space (X, τ) is said to be πgs -closed if $\mathrm{scl}(A) \subset U$ whenever $A \subset U$ and U is π -open in X.

Remark 2.2 Since, for a subset of a space, we have the implications: regular open $\Rightarrow \pi$ -open $\Rightarrow \delta$ -open \Rightarrow open, from definitions stated above, we have the following diagram of implications:

$$\begin{array}{cccc} {\rm closed} & \Rightarrow & g\text{-closed} & \Rightarrow & \pi g\text{-closed} \\ & & & \Downarrow & & \Downarrow \\ {\rm semiclosed} & \Rightarrow & gs\text{-closed} & \Rightarrow & \pi gs\text{-closed} \end{array}$$

where none of these implications is reversible as the following example shows.

Example 2.3 (a) Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$. Put $A = \{b\}$. Then A is gs-closed in (X, τ) but it is neither closed nor g-closed. Put $B = \{a\}$. Then B is πgs -closed but not gs-closed in (X, τ) .

(b) Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Put $A = \{a\}$. Then A is πgs -closed but not πg -closed in (X, τ) . Put $B = \{a, b\}$. Then B is rg-closed but not πgs -closed in (X, τ) .

Recall that a space (X, τ) is called extremally disconnected [4] if every open subset of X has open closure or equivalently if every regular closed set is open.

Lemma 2.4 [11,6] For a space (X, τ) the following hold:

- (a) X is extremally disconnected if and only if cl(A) = scl(A) for every semiopen set A of X.
- (b) X is extremally disconnected if and only if every semiclosed set of X is α -closed.

Theorem 2.5 For a subset A of a space (X, τ) , the following hold:

- (a) If A is π -open and πgs -closed in X, then it is semiclosed and hence clopen.
- (b) If A is semiopen and πgs -closed in an extremally disconnected space X, then it is πg -closed.
- *Proof.* (a) If A is π -open and πgs -closed, then $\mathrm{scl}(A) \subset A$ and so A is semiclosed. Hence A is clopen, since π -open set is open and semiclosed open set is closed.
- (b) Let $A \subset U$ where U is π -open in X. Since A is πgs -closed, $\mathrm{scl}(A) \subset U$. By Lemma 2.4, $\mathrm{cl}(A) = \mathrm{scl}(A) \subset U$. Hence A is πg -closed.

Theorem 2.6 If A is a πgs -closed subset of a space (X, τ) , then $scl(A) \setminus A$ does not contain any non-empty π -closed set.

Proof. Let F be any π -closed set such that $F \subset \operatorname{scl}(A) \setminus A$. Then $A \subset X \setminus F$. Since A is πgs -closed and $X \setminus F$ is π -open, we have $\operatorname{scl}(A) \subset X \setminus F$, i.e. $F \subset X \setminus \operatorname{scl}(A)$. Hence $F \subset \operatorname{scl}(A) \cap (X \setminus \operatorname{scl}(A)) = \emptyset$. This shows that $F = \emptyset$.

Corollary 2.7 Let A be a πgs -closed subset of a space (X, τ) . Then A is semiclosed if and only if $scl(A) \setminus A$ is π -closed if and only if A = sint(scl(A)).

Remark 2.8 (a) Every finite union of πgs -closed sets may fail to be a πgs -closed set.

(b) Every finite intersection of πgs -closed sets may fail to be a πgs -closed set.

Example 2.9

Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then we have

(a) Let $A = \{a\}$ and $B = \{b\}$. Then A and B are πgs -closed but $A \cup B = \{a, b\}$ is not πgs -closed in (X, τ) , since $\{a, b\}$ is π -open and $\mathrm{scl}(A \cup B) = X$.

(b) Let $A = \{a, b, c\}$ and $B = \{a, b, d\}$. Then A and B is πgs -closed but $A \cap B = \{a, b\}$ is not πgs -closed in (X, τ) .

However, we have the following.

Theorem 2.10 If A and B are semiopen πgs -closed sets in extremally disconnected space (X, τ) , then $A \cup B$ is πgs -closed.

Proof. Let $A \cup B \subset U$ where U is π -open in X. Since A and B are πgs -closed, $\mathrm{scl}(A) \subset U$ and $\mathrm{scl}(B) \subset U$. Since X is extremally disconnected, by Lemma 2.4 we have $\mathrm{scl}(F) = \mathrm{cl}(F)$ for any semiopen set F of X. Hence we obtain $\mathrm{scl}(A \cup B) = \mathrm{scl}(A) \cup \mathrm{scl}(B) \subset U$. This shows that $A \cup B$ is πgs -closed.

Lemma 2.11 [25] If $A \subset Y \subset X$ and Y is a preopen subset of X, then $scl_Y(A) = scl(A) \cap Y$, where $scl_Y(A)$ is semiclosure of A in subspace Y.

Lemma 2.12 [28] Let Y is a preopen subset of a space X. Then we have:

- (a) If A is π -open in Y, then there exists a π -open set B of X such that $A = B \cap Y$.
 - (b) If A is π -open in X, then $A \cap Y$ is π -open in Y.

Theorem 2.13 Let $A \subset Y \subset X$. Then:

- (a) If Y is preopen in X and A is πgs -closed in X, then A is πgs -closed in Y.
- (b) If Y is πgs -closed and regular open in X and A is πgs -closed in Y, then A is πgs -closed in X.
- *Proof.* (a) Let $A \subset U$ where U is π -open in Y. By Lemma 2.12, $U = V \cap Y$ for some π -open V in X. Since A is πgs -closed in X, we have $\mathrm{scl}(A) \subset V$ and by Lemma 2.11, $\mathrm{scl}_Y(A) = \mathrm{scl}(A) \cap Y \subset V \cap Y = U$. Hence A is πgs -closed in Y.
- (b) Let $A \subset U$ where U is π -open in X. By Lemma 2.12, $U \cap Y$ is π -open in Y and since A is πgs -closed in Y, $\mathrm{scl}_Y(A) \subset U \cap Y$. By Lemma

2.11 and Theorem 2.5 (a), we have $scl(A) = scl_Y(A) \cap Y = scl_Y(A) \subset U$. Hence A is πgs -closed in X.

Corollary 2.14 If A is πgs -closed and regular open subset and B is semiclosed subset of a space X, then $A \cap B$ is πgs -closed.

Proof. Let $A \cap B \subset U$ where U is π -open in A. Since B is semiclosed in X, $A \cap B$ is semiclosed in A and thus $scl_A(A \cap B) = A \cap B$. That is $scl_A(A \cap B) \subset U$. Then $A \cap B$ is πgs -closed in the πgs -closed and regular open set A and hence by above theorem $A \cap B$ is πgs -closed in X.

Theorem 2.15 If A is πgs -closed in a space X and $A \subset B \subset scl(A)$, then B is πgs -closed.

Proof. Let $B \subset U$ where U is π -open in X. Since $A \subset U$ and A is πgs -closed, $\mathrm{scl}(A) \subset U$ and then $\mathrm{scl}(B) = \mathrm{scl}(A) \subset U$. Hence B is πgs -closed.

3. On πgs -open sets

Definition 3.1 A subset A of a space (X, τ) is called πgs -open if its complement $X \setminus A$ is πgs -closed.

Theorem 3.2 A subset A of a space X is πgs -open if and only if $F \subset sint(A)$ whenever F is π -closed and $F \subset A$.

Proof. Let $F \subset A$ where F be π -closed in X. Then $X \setminus A \subset X \setminus F$ and $X \setminus F$ is π -open in X. Since $X \setminus A$ is πgs -closed, $\mathrm{scl}(X \setminus A) \subset X \setminus F$. By Theorem 1.6 of [7], we have $\mathrm{scl}(X \setminus A) = X \setminus \mathrm{sint}(A) \subset X \setminus F$, i.e. $F \subset \mathrm{sint}(A)$.

Conversely, let $X \setminus A \subset U$ where U is π -open in X. Then $X \setminus U$ is π -closed and $X \setminus U \subset A$. By hypothesis, we have $X \setminus U \subset \operatorname{sint}(A)$, i.e. $\operatorname{scl}(X \setminus A) = X \setminus \operatorname{sint}(A) \subset U$. This implies $X \setminus A$ is πgs -closed and thus A is πgs -open.

Theorem 3.3 If A is a πgs -open subset of X, then U = X whenever U is π -open and $sint(A) \cup (X \setminus A) \subset U$.

Proof. Let U be a π -open set and $\operatorname{sint}(A) \cup (X \setminus A) \subset U$. Then $X \setminus U \subset (X \setminus \operatorname{sint}(A)) \cap A$, i.e. $(X \setminus U) \subset \operatorname{scl}(X \setminus A) \cap A$. By Theorem 2.6, $X \setminus U = \emptyset$ and hence U = X.

Theorem 3.4 Let $A \subset Y \subset X$ and Y be π -open and closed in X. If A is πgs -open in Y, then A is πgs -open in X.

Proof. Let F be any π -closed set and $F \subset A$. Since F is π -closed in Y and A is πgs -open in Y, $F \subset \text{sint}_Y(A)$, where $\text{sint}_Y(A)$ is semi-interior of A in subspace Y, and hence $F \subset \text{sint}(A) \cap Y \subset \text{sint}(A)$. This shows that A is πgs -open in X.

Theorem 3.5 If A is πgs -open in X and $sint(A) \subset B \subset A$, then B is πgs -open.

Proof. Let $F \subset B$ and F be π -closed in X. Since A is πgs -open and $F \subset A$, we have $F \subset \operatorname{sint}(A)$ and thus $F \subset \operatorname{sint}(B)$. Hence B is πgs -open.

Theorem 3.6 If A is πgs -closed in X, then $scl(A) \setminus A$ is πgs -open.

Proof. Let $F \subset \operatorname{scl}(A) \setminus A$ and F be π -closed in X. Then by Theorem 2.6, we have $F = \emptyset$ and hence $F \subset \operatorname{sint}(\operatorname{scl}(A) \setminus A)$. This shows that $\operatorname{scl}(A) \setminus A$ is πgs -open.

4. On πgs - $T_{1/2}$ spaces

Definition 4.1 A space (X, τ) is called πgs - $T_{1/2}$ if every πgs -closed set is semiclosed.

Next we have a characterization of πgs - $T_{1/2}$ spaces.

Theorem 4.2 For a space (X, τ) the following conditions are equivalent:

- (a) $X \text{ is } \pi gs\text{-}T_{1/2}$.
- (b) Every singleton of X is either π -closed or semiopen.
- (c) Every singleton of X is either π -closed or open.

Proof. (a) \Rightarrow (b) Let $x \in X$ and assume that $\{x\}$ is not π -closed. Then clearly $X \setminus \{x\}$ is not π -open. Since X is the only π -open set containing $X \setminus \{x\}$, $X \setminus \{x\}$ is πgs -closed. By (a), it is semiclosed and thus $\{x\}$ is semiopen.

(b) \Rightarrow (a) Let A be πgs -closed. Let $x \in scl(A)$. We consider the following two cases:

Case I. Let $\{x\}$ be π -closed. By Theorem 2.6, $\mathrm{scl}(A) \setminus A$ does not contain $\{x\}$. Since $x \in \mathrm{scl}(A)$, then $x \in A$.

Case II. Let $\{x\}$ be semiopen. Since $x \in \operatorname{scl}(A)$, then $\{x\} \cap A \neq \emptyset$. Thus $x \in A$.

So, in both case, $x \in A$. This show that $\mathrm{scl}(A) \subset A$ or equivalently A is semiclosed.

(b) \Leftrightarrow (c) Note that a singleton is semiopen if and only if it is open.

Dontchev [12] showed that a space (X, τ) is semi-pre- $T_{1/2}$ if and only if every singleton of X is closed or preopen and obtained the following implication: $T_{1/2} \Rightarrow$ semi-pre- $T_{1/2}$ but not conversely. Recently, Park [28] showed that a space (X, τ) is πgp - $T_{1/2}$ if and only if every singleton of X is π -closed or preopen and obtained the following implication: pre-regular $T_{1/2} \Rightarrow \pi gp$ - $T_{1/2} \Rightarrow$ semi-pre- $T_{1/2}$. Since, for subset of a space, regular closed $\Rightarrow \pi$ -closed \Rightarrow closed, we have the following result:

Remark 4.3 For a space (X, τ) the following implications hold:

$$\begin{array}{ccc} & \text{preregular } T_{1/2} \\ & & & \downarrow \\ \pi g s\text{-}T_{1/2} & \Rightarrow & \pi g p\text{-}T_{1/2} & \Rightarrow & \text{semi-pre-}T_{1/2} \end{array}$$

However, the reverses of the above implications are not always true and the notions of preregular $T_{\frac{1}{2}}$ and πgs - $T_{1/2}$ are independent of each other as the following example shows.

Example 4.4 (a) Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is πgs - $T_{1/2}$ but not preregular $T_{1/2}$.

- (b) Let $X=\{a,b,c\}$ and $\tau=\{X,\emptyset,\{a,b\},\{c\}\}$. Then (X,τ) is preregular $T_{1/2}$ but not πgs - $T_{1/2}$.
- (c) Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then (X, τ) is semi-pre- $T_{1/2}$ (even $T_{1/2}$, α -space) but neither πgs - $T_{1/2}$ nor πgp - $T_{1/2}$.

Dontchev [12] proved that every α -space is semi-pre- $T_{1/2}$ but not conversely. An α -space [11] is a space in which every α -closed set is closed, i.e. $\tau^{\alpha} = \tau$. Example 4.4 and the following example show that the concepts of α -spaces and πgs - $T_{1/2}$ spaces are independent of each other.

Example 4.5 Let X be the real numbers with the usual topology. Then X is cleanly πgs - $T_{1/2}$ space. Set $A = \{\frac{1}{i} : i = 1, 2, 3, \cdots\}$. Then A is nowhere dense but obviously A is not closed. By Lemma 1.2 of [11], X is not an α -space.

The next theorem gives further characterization of πgs - $T_{1/2}$ spaces.

Theorem 4.6 For a space (X, τ) the following conditions are equivalent:

- (a) $X \text{ is } \pi gs\text{-}T_{1/2}$.
- (b) Every preclosed singleton of X is π -closed.
- (c) Every non-open singleton is π -closed.

Proof. (a) \Rightarrow (b) Let $x \in X$ and assume that $\{x\}$ is preclosed. Since every singleton in any space is either open or preclosed [22, Lemma 2.3], $\{x\}$ is not open and hence by Theorem 4.2, $\{x\}$ is π -closed.

(b) \Rightarrow (a) If for some $x \in X$, $\{x\}$ is not open, then $\{x\}$ is preclosed. Then by (b), it is π -closed and hence by Theorem 4.2, X is πgs - $T_{1/2}$.

(b)
$$\Leftrightarrow$$
(c) It is obvious.

Recall that a space (X, τ) is called submaximal [4] if every dense subset of X is open. Reilly and Vamanamurthy [29] showed that (X, τ) is submaximal if and only if every preopen subset of X is open.

Theorem 4.7 Let (X, τ) be a submaximal space in which every closed set is π -closed. Then the following conditions are equivalent:

- (a) X is semi-pre- $T_{1/2}$.
- (b) $X \text{ is } \pi gs\text{-}T_{1/2}.$

Theorem 4.8 Let A be open in (X, τ) . If (X, τ) is a πgs - $T_{1/2}$ space, then the subspace $(A, \tau | A)$ is also πgs - $T_{1/2}$.

Proof. Using Theorem 4.2, it is enough to show that every singleton of $(A, \tau | A)$ is π -closed or semiopen. Let $x \in A$. If $\{x\}$ is π -closed in X, then it is π -closed in $(A, \tau | A)$. Assume that $\{x\}$ is semiopen in X. Since the intersection of a semiopen set and a open set is semiopen in open set and since A is open, then $\{x\}$ is semiopen in $(A, \tau | A)$.

5. πgs -continuous and πgs -irresolute functions

Definition 5.1 A function $f:(X,\tau)\to (Y,\sigma)$ is called:

- (a) πgs -continuous if $f^{-1}(V)$ is πgs -closed in X for every closed set V of Y;
- (b) πgs -irresolute if $f^{-1}(V)$ is πgs -closed in X for every πgs -closed set V of Y.

Remark 5.2 From Definitions 1.2 and 5.1, we obtain the following diagram:

continuity
$$\Rightarrow$$
 g-continuity \Rightarrow πg -continuity \Rightarrow rg-continuity \Rightarrow g -continuity \Rightarrow gs-continuity \Rightarrow g -continuity \Rightarrow g -continuity \Rightarrow g -continuity

- (a) None of these implications is reversible as shown by Example 1 of Balachandran et al. [3] and the following Example 5.3.
- (b) The notions of πgs -continuity and rg-continuity are independent of each other.
- (c) The notions of πg -continuity and gs-continuity are independent of each other.
- (d) Every πgs -irresolute function is πgs -continuous, but not conversely.
- (e) The notions of πgs -irresoluteness and gs-irresoluteness are independent of each other.

Example 5.3 (a) Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{X, \emptyset, \{c\}, \{a, b\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be the identity. Then f is rg-continuous but not πgs -continuous, since $\{a, b\}$ is closed in (X, σ) and $f^{-1}(\{a, b\})$ is not πgs -closed in (X, τ) .

- (b) Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}\}$ and $\sigma = \{X, \emptyset, \{c\}\}\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity. Then f is πgs -continuous (even πg -continuous) but not gs-continuous, since $\{a, b\}$ is closed in (X, σ) and $f^{-1}(\{a, b\})$ is not gs-closed in (X, τ) .
- (c) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ and $\sigma = \{X, \emptyset, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Let $f: (X, \tau) \to (X, \sigma)$ be a function defined by f(a) = c, f(b) = a, f(c) = d and f(d) = b. Then f is gs-continuous but not rg-continuous, since $\{d\}$ is closed in (X, σ) and $f^{-1}(\{d\})$ is not rg-closed in (X, τ) . Moreover, since X is the only nonempty regular open set in (X, σ) , every subset of X is πgs -closed in (X, σ) . Hence f is not πgs -irresolute, since $\{a, c\}$ is πgs -closed in (X, σ) and $f^{-1}(\{a, c\})$ is not πgs -closed in (X, τ) .

Example 5.4 (a) Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a, b\}\}$ and $\sigma = \{X, \emptyset, \{c\}, \{b, c\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be a function defined by f(a) = c, f(b) = b, and f(c) = a. Then f is πgs -irresolute but not gs-irresolute.

 $\{a\}, \{a,b\}\}$. Let $f: (X,\tau) \to (X,\sigma)$ be a function defined by f(a) = a, f(b) = f(c) = c and f(d) = d. Then f is gs-irresolute but not πgs -irresolute.

Theorem 5.5 For a function $f:(X,\tau)\to (Y,\sigma)$, the following hold:

- (a) If f is πgs -irresolute and X is πgs - $T_{1/2}$, then f is irresolute.
- (b) If f is πgs -continuous and X is πgs - $T_{1/2}$, then f is semi-continuous.
- (c) If f is πgs -continuous and X is an extremally disconnected α -space, then f is πg -continuous.
- *Proof.* (a) Let V be a semiclosed subset of Y. Then V is πgs -closed in Y and since f is πgs -irresolute, then $f^{-1}(V)$ is πgs -closed in X. Since X is πgs - $T_{1/2}$, $f^{-1}(V)$ is semiclosed in X. Hence f is irresolute.
 - (b) Similar to (a).
- (c) Let V be any closed subset of Y. Let $f^{-1}(V) \subset U$, where U is π -open in X. Then $f^{-1}(V)$ is πgs -closed in X. Since X is extremally disconnected α -space, $\operatorname{cl}(f^{-1}(V)) = \operatorname{scl}(f^{-1}(V)) \subset U$, i.e. $f^{-1}(V)$ is πg -closed in X. Hence f is πg -continuous.

Theorem 5.6 If $f:(X,\tau)\to (Y,\sigma)$ is an almost π -continuous and presemiclosed function, then f(A) is πgs -closed in Y for every πgs -closed set A of X.

Proof. Let A be any πgs -closed set of X. Let $f(A) \subset V$, where V is regular open in Y. Then V is π -open. Since f is almost π -continuous, $f^{-1}(V)$ is π -open in X and $A \subset f^{-1}(V)$. Then we have $\mathrm{scl}(A) \subset f^{-1}(V)$ and hence $f(\mathrm{scl}(A)) \subset V$. Since f is presemiclosed, $f(\mathrm{scl}(A))$ is semiclosed in Y and hence $\mathrm{scl}(f(A)) \subset \mathrm{scl}(f(\mathrm{scl}(A))) \subset V$. This shows that f(A) is πgs -closed in Y.

The composition of two πgs -continuous function need not be πgs -continuous. For consider the following example:

Example 5.7 Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$, $\sigma = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\rho = \{X, \emptyset, \{c, d\}\}$. Let $f : (X, \tau) \rightarrow$

 (X, σ) be the identity and $g: (X, \sigma) \to (X, \rho)$ be a function defined by g(a) = a, g(b) = c, g(c) = d and g(d) = d. Then f and g are πgs -continuous but the composition $g \circ f$ is not πgs -continuous, since $\{a, b\}$ is closed in (X, ρ) and $(g \circ f)^{-1}(\{a, b\})$ is not πgs -closed in (X, τ) .

However, the following theorem holds:

Theorem 5.8 Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\rho)$ be two functions. Then:

- (a) If f is πgs -continuous and g is continuous, then $g \circ f$ is πgs -continuous.
- (b) If f is πgs -irresolute and g is πgs -irresolute, then $g \circ f$ is πgs -irresolute.
- (c) If f is πgs -irresolute and g is πgs -continuous, then $g \circ f$ is πgs -continuous.
- (d) Let Y be a πgs - $T_{1/2}$ space. If f is irresolute and g is πgs -continuous, then $g \circ f$ is semi-continuous.

Proof. Obvious.

Theorem 5.9 Let $f:(X,\tau)\to (Y,\sigma)$ be a πgs -irresolute and presemiclosed surjection. If X is a πgs - $T_{1/2}$ space, then Y is also πgs - $T_{1/2}$.

Proof. Let A be a πgs -closed subset of Y. Since f is πgs -irresolute, then $f^{-1}(A)$ is πgs -closed in X. Since X is πgs - $T_{1/2}$, then $f^{-1}(A)$ is semiclosed in X. By the rest of the assumption it follows that A is semiclosed in Y. Hence Y is πgs - $T_{1/2}$.

Theorem 5.10 Let $f:(X,\tau)\to (Y,\sigma)$ be a rc-preserving and presemiopen (open) bijection. If X is a πgs - $T_{1/2}$ space, then Y is also πgs - $T_{1/2}$.

Proof. Let $y \in Y$. Since X is πgs - $T_{1/2}$ and f is bijective, then by Theorem 4.2 for some $x \in X$ with f(x) = y, we have $\{x\}$ is π -closed or semiopen (open). If $\{x\}$ is π -closed, then $\{y\} = f(\{x\})$ is π -closed since f is rc-preserving and bijective. If $\{x\}$ is semiopen (open), then $\{y\}$ is

semiopen (open) since f is presemiopen (open). Hence by Theorem 4.2, Y is πgs - $T_{1/2}$.

References

- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [2] S.P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717-719.
- [3] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 12 (1991), 5-13.
- [4] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass., 1966.
- [5] M.C. Caldas, Semi-generalized continuous maps in topological spaces, Portugal. Math. 52(4) (1995), 399-407.
- [6] J. Cao, M. Ganster and I. Reilly, Submaximality, extremal disconnectedness and generalized closed sets, Houston J. Math., 24 (1998), 681-688.
- [7] S.G. Crossely and S.K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99-112.
- [8] S.G. Crossely and S.K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233-254.
- [9] R. Devi, K. Balachandran and H. Maki, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J. Pure Appl. Math., 26 (1995), 271-284.
- [10] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Math., 14 (1993), 41-54.
- [11] J. Dontchev, An answer to a question of Mrseic and Reilly, Questions Answers Gen. Topology, 12 (2) (1994), 205-207.
- [12] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16 (1995), 35-48.

- [13] J. Dontchev and T. Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar., 89(3) (2000), 211-219.
- [14] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., 28(3) (1997), 351-360.
- [15] Y. Gnanambal and K. Balachandran, On gpr-continuous function in topological spaces, Indian J. Pure Appl. Math., 30(6) (1999), 581-593.
- [16] D.S. Jankovic and I.L. Reilly, On semiseparation properties, Indian J. Pure Appl. Math., 16(9) (1985), 957-964.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [18] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89-96.
- [19] S.N. Maheswari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 22 (1978), 27-29.
- [20] D. Maio and T. Noiri, On s-closed space, Indian J. Pure Appl. Math., 18(3) (1987), 226-233.
- [21] H. Maki, K. Balachandran and R. Devi, Remarks on semi-generalized closed sets and generalized semi-closed sets, Kyungpook Math. J., 36 (1996), 155-163.
- [22] H. Maki, J. Umehara and T. Noiri, Every topological space is pre $T_{1/2}$, Mer. Fac. Sci. Kochi Univ. Ser. A. Math., 17 (1996), 33-42.
- [23] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [24] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [25] T. Noiri and B. Ahmad, A note on semi-open functions, Math. Sem. Notes Kobe Univ., 10 (1982), 437-441.
- [26] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyung-pook Math. J., 33 (1993), 211-219.
- [27] J.H. Park, On s-normal spaces and some functions, Indian J. Pure

- Appl. Math. 30(6) (1999), 575-580.
- [28] J.H. Park, On πgp -closed sets in topological spaces, to appear.
- [29] I.L. Reilly and M.K. Vamanamurthy, On some questions concerning preopen sets, Kyungpook Math. J., 30(1) (1990), 87-93.
- [30] N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.
- [31] V. Zaitsav, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR 178 (1968), 778-779.

Bu Young Lee, Su-Young Shin Department of Mathematics, Dong-A University, Pusan 604-714, Korea(south)

Jin Han Park
Division of Mathematical Sciences,
Pukyong National University,
Pusan 608–739, Korea(south)
Email: jihpark@pknu.ac.kr