Functional Role of Peptide Segment Containing 1-25 Amino Acids in N-terminal End Region of ErmSF

ErmSF에서 특이적으로 발견되는 N-terminal end region에 존재하는 1-25번째 아미노산을 함유하는 peptide segment의 효소 활성에서의 역할

  • Jin, Hyung-Jong (Department of Bioscience and Biotechnology, College of Natural Science, University)
  • 진형종 (수원대학교 자연과학대학 생명공학과)
  • Published : 2006.09.30

Abstract

ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA to confer the resistance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism ranging from antibiotic producers to pathogens. To define the functional role of peptide segment encompassing amino acid residues 1 to 25 in NTER (N-terminal end region) of ErmSF, one of the ERM proteins, DNA fragment encoding mutant protein deprived of that peptide was cloned and overexpressed in E. coli to obtain a purified soluble form protein to the apparent homogeneity in the yield of 12.65 mg per liter of culture. The in vitro activity of mutant protein was found to be 85% compared to wild type ErmSF, suggesting that this peptide interact with substrate to affect the enzyme activity. This diminished activity of mutant protein caused the delayed expression of antibiotic resistance in vivo, that at fIrst cells expressing mutant protein showed the retarded growth due to the antibiotic action but with time cells inhibited by antibiotic gradually recovered the viability to exert the resistance to the same extent as those with wild type protein.

ERM protein 은 23S rRNA의 $A_{2058}$에 dimethylation시킴으로써 $MLS_B$계 항생제의 부착을 저해하여 항생제의 활성을 억제하는 내생인자 단백질이다. ERM 단백질의 하나인 ErmSF의 N-말단부위(N-termimal end region, NTER)에 존재하는 1-25번째 아미노산을 함유하는 펩타이드의 활성에서의 역할을 알아보기 위해 이률 제거한 변이 단백질을 표현하는 유전자를 클로닝하고 대장균에서 수용성 단백질로 12.65 mg/L culture의 수율로 대량생산하였다. 이렇게 대량생산된 단백질의 활성을 in vivo와 in vitro에서 확인하였다. 그 결과 in vitro에서 야생형(wild type)의 단백질에 비해 15%의 활성이 감소한 것을 확인하였고 이는 제거된 펩타이드가 기질과 상호작용하여 효소의 활성에 영향을 미친다는 것을 시사하고 있다. 이렇게 감소된 효소의 활성은 생체 내(in vivo) 활성에도 적용되어 처음에는 변이 단백질을 함유하는 세포가 항생제의 작용에 의하여 성장억제를 받지만 시간의 경과와 함께 내성을 회복하여 밤샘 배양하였을 경우는 야생형 단백질을 함유한 세포와 동일한 내성 즉 항생제에 의한 성장억제지역(inhibition zone)을 전혀 나타내지 않는 것으로 밝혀졌다.

Keywords

References

  1. 진형종. 2001. MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 ErmSF의 domain 발현. Kor. J. Microbiol. 37, 245-252
  2. Birmingham, V.A., K.L. Cox, J.L. Larson, S.E. Fishman, C.L. Hershberger, and E.T. Seno. 1986. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532-539 https://doi.org/10.1007/BF00331036
  3. Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207-223 https://doi.org/10.1146/annurev.mi.43.100189.001231
  4. 'Frontiers in Biotechnology : Antibiotic Resistance' 1994. Science 264, 317-476
  5. Gandecha, A.R. and E. Cundliffe. 1996. Molecular analysis of tlrD, an MLS resistance determinant from tylosin producer, Streptomyces fradiae. Gene 180, 173-176 https://doi.org/10.1016/S0378-1119(96)00448-9
  6. Jin, H.J. 1999. ermSF, a ribosomal RNA adenine N6-methyltransferase gene from Streptomyces fradiae, confers MLS(macrolidelincosamide- streptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-25
  7. Jin, H.J and Y.D. Yang. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr. Purif. 25, 149-59 https://doi.org/10.1006/prep.2002.1621
  8. Kovalic, D., J.H. Kwak, and B. Weisblum. 1991. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acid Res. 19, 4650
  9. Kovalic, D., R.B. Giannattasio, H.J. Jin, and B. Weisblum. 1994. 23S rRNA Domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase. J. Bacteriol. 176, 6992-6998 https://doi.org/10.1128/jb.176.22.6992-6998.1994
  10. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature. 227, 680-685 https://doi.org/10.1038/227680a0
  11. Lai, C.J., B. Weisblum, S.R. Fahnestock, and M. Nomura. 1973. Alteration of 23S ribosomal RNA and erythromycin-induced resisitance to lincomycin and spiramycin in Staphylococcus aureus. J. Mol. Biol. 74, 67-72 https://doi.org/10.1016/0022-2836(73)90355-0
  12. Liu, M., F. Kirpekar, G.P. Van Wezel, and S. Douthwaite. 2000. The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Mol. Microbiol. 37, 811-20 https://doi.org/10.1046/j.1365-2958.2000.02046.x
  13. Liu, M. and S. Douthwaite. 2002. Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Grampositive bacteria. Mol. Microbiol. 44, 195-204 https://doi.org/10.1046/j.1365-2958.2002.02866.x
  14. Poehlsgaard, J. and S. Douthwaite. 2005. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3, 870-81 https://doi.org/10.1038/nrmicro1265
  15. Roberts, M.C., J. Sutcliffe, P. Courvalin, L.B. Jensen, J. Rood, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincomycin- streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830
  16. Roberts, M.C. 2004. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol. Biotechnol. 28, 47-62 https://doi.org/10.1385/MB:28:1:47
  17. Rosteck Jr., R.R., P.A. Reynolds, and C.L. Hershberger. 1991. Homology between proteins controlling Streptomyces fradiaetylosin resistance and ATP-binding transport. Gene 102, 27-32 https://doi.org/10.1016/0378-1119(91)90533-H
  18. Shortridge, V.D., G.V. Doer, A.B. Brueggemann, J.M. Beyer, and R.K. Flamm. 1999. Prevalence of macrolide resistance mechanisms in Streptococcus pneumoniae isolates from a multicenter antibiotic resistance surveillance study conducted in the United States in 1994-1995. Clin. Infect. Dis. 29. 1186-1188 https://doi.org/10.1086/313452
  19. Skinner, R., E. Cundliffe, and F.J. Schmidt. 1983. Site for Action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706
  20. Vester, B. and S. Douthewaite. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methytransferase. J. Bacteriol. 176, 6999-7004 https://doi.org/10.1128/jb.176.22.6999-7004.1994
  21. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585 https://doi.org/10.1128/AAC.39.3.577
  22. Xiong, L., Y. Korkhin, and A.S. Mankin. 2005. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob. Agents Chemother. 49, 281-288 https://doi.org/10.1128/AAC.49.1.281-288.2005
  23. Zalacain, M. and E. Cundliffe. 1989. Methylation of 23S rRNA by tlrA(ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254-4260 https://doi.org/10.1128/jb.171.8.4254-4260.1989
  24. Zalacain, M. and E. Cundliffe. 1991. Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97, 137-142 https://doi.org/10.1016/0378-1119(91)90021-3