246 HYEONG BAE PARK et al : AN IMPLEMENTATION METHOD OF CYCLE ACCURATE SIMULATOR...

An Implementation Method of Cycle Accurate

Simulator for the Design of a Pipelined DSP

Hyeong Bae Park, Ju Sung Park, Tae Hoon Kim, and Hua Jun Chi

Abstract—In this paper, we introduce an implement-
tation method of the CBS (Cycle Base Simulator),
which describes the operation of a DSP (Digital
Signal Processor) at a pipeline cycle level. The CBS is
coded with C++, and is verified by comparing the
results from the CBS and HDL simulation of the DSP
with the various test vectors and application
The CBS shows the data about the

internal registers, status flags, data bus, address bus,

programs.

input and output pin of the DSP, and also the control
signals at each pipeline cycle. The developed CBS can
be used in evaluating the performance of the target
DSP before the RTL(Register Transfer Level) coding
as well as a reference for the RTL level design.

accurate simulator, co-

Index Terms—Cycle

simulation, pipelined DSP

I. INTRODUCTION
Today's remarkable development of the
semiconductor fabrication technology and CAD

(Computer Aided Design) tools makes it possible to
design million gates chip in a short time. The chip
complexity becomes larger, but the design period
becomes shorter. Under this situation, it is very
important to make the model for evaluation of the
performance of the target chip before the main design
start. And also, it would be good we could have a
reference for quick debugging at RTL coding step,

which has the detailed information about internal data

Manuscript received Sep 9, 2006; revised Nov. 14, 2006.
Dept. of Electronics Engineering Pusan National Univ., Busan, Korea
E-mail : juspark@pusan.ac.kr

and control signals of the target chip. There are many
abstraction levels in modeling microprocessors and
DSP’s depending on the usage of the model, such as
instruction accurate simulation model, event driven
simulation model, cycle accurate simulation model[1~3].
There is a trade-off between simulation speed and
accuracy of the models.

The various models may be helpful in designing a
microprocessor or a DSP, but we have to invest a lot of
time and manpower for developing the models
themselves. Thus it is very important to choose the
proper model for designing the DSP efficiently. In this
respect, it would be good the model have a good
simulation speed, lots of information about the internal
registers, status flags, data bus, address bus, input and
output pin of the DSP, and also the control signals at
each pipeline cycle. The model that has such properties
is called as the pipeline cycle accurate simulator.

In this paper, we represent an implementation method
of a cycle accurate simulator using C++ language for
24bit DSP. The previous papers didn’t show the detailed
techniques and procedures for implementing the CBS
and the control signal information, which is very useful
for designing DSP at RTL level{4~7].
introduces the detailed implementation method and

This paper

procedure, which are ecasily adopted to developing
another CBS’s for other processors. Another the
important goal of CBS is being used as a reference in
RTL design verification step, at this step the information
about control signals are useful. This paper shows how
to build co-simulation environment to easily compare the
result from CBS and that of HDL (Hardware Description
Language) simulation[4~6, 8].

In section 2, we describe design flow of CBS,

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 247

followed in section 3, the procedure and technique of
designing cycle accurate model for 24bit DSP CBS is
introduced. In section 4, the integration of CBS model
and RTL model on the same platform will be introduced.
In the rest of section, we give results and conclusions.

I1. DESIGN FLOW

The design procedure of CBS and what have to be
done at each step are shown in Fig. 1 The clear and
explicit analysis about architecture, instructions, and
pipeline of the target DSP is carried out before the
detailed code coding begins.

Pipeline consisting of 6 levels is implemented by
combination of one or more functional blocks. At the
pipeline implementation step, the thorough
understanding about what functional block is involved
by each pipeline stage and how each pipeline stage
blocks for
implementing all instructions is necessary. We makes
the I/O ports of the functional block of CBS exactly

matched to those of the RTL level code for the purpose

communicates with the functional

of using CBS as a reference at RTL code debugging step.

Then operation of the functional blocks is described as

behavioral level. After the functional blocks are

designed, 6 pipeline stages are designed according to the

objects that should be done at each stage. The decoder
block that generates control signals depending on the
instruction is designed at the step of implementing
instruction and verification, and verified. The designed
CBS is verified through the various test vectors and
application programs. The integration of CBS and HDL
simulation tool and the GUI design have been carried
out for convenient use at the step.

CBS model
-»i Analysis J
Functional blocks

ion and

A architecture of
target processor

" ACC, MAU, ALU, BS, BUS,
PAGEN, AU, INSDEC, MEMORY
PRE_FETCH, FETCH, DECODE,
ACCESS, READ, EXECUTE
Decoder block }— verification of
instructions
Application programs Verification of CBS
—

Fig. 1. Design flow of CBS.

HDL
mode!

1I1. DESIGN OF CYCLE ACCURATE MODEL

In this introduce the details of

implementing the cycle accurate simulation model.

section, we

Since target DSP has 6 pipeline stages, the CBS is
divided to 6 operations such as;: PRE_FETCH, FETCH,
DECODE, ACCESS, READ, EXECUTION. The
functional blocks that are designed at the previous step
are placed the proper pipeline stages according to their
function as shown in Fig. 2 The architecture of the CBS
is shown in Fig. 2.

— ,_’ R _ T ~
M me M
E)L‘g: bAGEM, I el . J} o
= 3 = !l _ | [!] 4
| ool S I T
S t;majh JTrnme |k
> TRET
HENHIES “n&ﬁ“‘J)gg 2 |1g]s[l Gk
@E@ﬂa g =3 1 ; ! 71 } ! 5
533 ' ' - -
g] g ! } % .l i *W(J
gi; = - 3 |1 :
i [il
= U
L] L LU . p
¥ PRE _FETCH[) « k¢ JFETCHY¢ M + DECODE(} ¢ M M MRead) ¢ M pErecuie)d

ACCESS{)

Fig. 2. The architecture of CBS.

1. Functional Block

In the case of designing processor using HDL, each
functional block is independent module, and each
module has connected through wire. Fig. 3 indicates the
method for designing functional blocks. Each functional
block is defined by CLASS type variable to preserve
modularity. Internal variables consist of 3 types which
indicate inputs, outputs, and status values. Internal
variables can be accessed only through GET() and SET()
member functions. Variables are defined as PROTECT
type, and functions are defined as PUBLIC type.
Functional blocks are composed of 3 internal functions
that include ControlSignal() function for control signal,
Execution() function for its operation, and Status() for
handling operational results.

It 1s shown in Fig. 4 that how the functional blocks are
executed in accordance with pipeline stage, through an
example, MAU unit. The necessary control signals for
operation of MAU is obtained by calling MAU.
SetConSig() function and MAU operation is carried

248 HYEONG BAE PARK et al : AN IMPLEMENTATION METHOD OF CYCLE ACCURATE SIMULATOR...

Class-type FunctionalBlock

Control
slginais(l

SetConSig()

GetConSig()

<:GetResult()
: G

Fig. 3. Concept of implementing the functional blocks.

A Execution

Execution()

d

etStatus()

Status() | SetStatus()

\‘__________

MAU.SetConSig(CONSIG[CurPos].E.pMau.AddSub,.
CONSIG|[CurPos].E.pMau.Mux,-
CONSIG[CurPos].E.pMau.PlusMinus,-
CONSIG[CurPos].E.pMau.SelSrc,.
CONSIG[CurPos].E.pMau.XMSignCon,
CONSIG[CurPos].E.pMau.XMux,.
CONSIG[CurPos].E.pMau.YMSignCon,
CONSIG[CurPos].E.pMau.YMux);

MAU.ExeMAU(TREG.GetReg(),

BUS.GetDB(),

BUS.GetPB(),

BUS.GetCB(),

ACC.GetACCAQ,

ACC.GetACCBQ,

ST1FRCT);

Fig. 4. Concept of the operation of a functional block.

out by calling MAU.ExeMAU() function. Finally,
MAU.GetResult() function is executed to access the
internal status values.

2. Pipeline

Real hardware operates in parallel, but the simulation
programs coded with C or C++ are executed serially on
computers. The operation of pipeline is carried out in
reverse order of data flow of the hardware on the CBS
program, properly modeling the operation of the target
DSP[7, 9]. The pipeline functions, which carry out 6
pipeline operations, are implemented with CLASS
variable type. Entire pipeline operation is taken into
account when one of 6 pipeline stage is designed. Source
code for implementing EXECUTE pipeline is shown as
an example in Fig. 5. EXECUTE stage operations
consist of CPU operation and storing results in memory.
Each functional block is called in reverse order as shown
in Fig. 5.

BOOL CDSP::ExeExecute()

{
// CPU operation
BS.SetConSig();
BS.ExeBS();
ALU.SetConSig();
ALU.ExeALU(Q;
MAU.SetConSig();
MAU.ExeMAU();
ACC.SetConSig();
ACC.ExeACCQ;

// Store resuit and update-status register
BUS.ExeEB();
DATAMEM.ExeWriteMEM();
StatusRegisterUpdate();

return true;

}

Fig. 5. An example of implementing pipeline stage,
EXECUTE.

In the case of the H/W, 1 cycle execution means that
the 6 pipelines operation is carried out concurrently. But
CBS must call 6 pipeline functions for 1 cycle execution
in the reverse order: EXECUTE() — READ() —
ACCESS() — DECODE() — FETCH() — PRE-
FETCH() as shown in Fig. 6 for operating like the
H/W[3, 6]. Each pipeline function is called at every 1
cycle. All of the control signals is generated in decoder
blocks at DECODE stage. The hazard problems are
solved by generating control signals if next instruction is
need to be stalled or in the case of hazard.

é@

dlock [[[1|

LD *aR1,3,A F‘,],-j @
LD *ARZ, 3,8 ",],Qﬂ.]
ADD A,0,B g a

ADD #10h,0,B, 8 %

"‘8
= [] A

1
25

5

[t

SFTA B, 3,A |

SENC
DSP_1cycle() s | s Execution{)
:
g:::};h"o’ 1048 - Reacl()
Access();
Decode(); =
Fetch(); n m
Prefetch();

Accesis()

Decode()

retum true;

} m-— Fetch()
e

5PAB Prefetch()

Fig. 6. Pipeline implementation sequence of CBS.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 249

3. Decoder

Before the decoder block is designed, it is necessary
to define what control signals are required for
implementing all instructions at all functional blocks.
The decoder block is designed to generate the control
signals to be supplied to functional blocks for
implementing the instructions of DSP. The instructions
of target DSP have various operation modes, repeat
mode, and hazard mode. The instructions are grouped
into 9 kinds of TYPE depending on whether they are
cycles. The
instructions have 15 STATE’s that determine the
pipeline operation of next instructions. The TYPE and
STATE of instruction is determined at DECODE stage.
The decoder block generates control signals according to
TYPE and STATE.

The decoder block reads the instructions from

repeatable or not, and instruction

IR(Instruction Register) and translates the instruction
and then generate control signals. For storing control
signals generated from decoder block, STRUCTURE
type variable that has 6 arrays is prepared for 6 pipeline
stages. Thus 6 instructions have independent control
signals for parallel operation. Control signals are stored
for next pipeline operation. Each pipeline is executed
using stored control signals for appropriate operation of
functional blocks.
generated and stored in arrays at DECODE stage.

In Fig. 7, @OOOGO indicates decoding timing in
CBS. While the control signals for ACCESS, READ,
EXECUTE of number 1 instruction are generated, and
DECODE, FETCH, PRE FETCH steps are carried out

Control signals for instruction
execution
‘ 'm (&]
npae
% o
;
Pl
e [rel:
EI L ;M'ﬁ_
Control signais for =+ | g e Garrayofs:ruc:uretype
plpellnecgeratlon "p%.?" 4 pgq.n g forsmrirgocntm‘signal
M [&]
5F a,z
PAB H
*&“
| & | . BRL-b G
LP |

Fig. 7. Decoding operation at DECODE stage.

All of the control signals are

o]
;
R

for instruction 2, 3, 4, respectively. If an instruction
needs exceptional pipeline operation like stall or hazard,
the decoder block generates exception control signals by
using STATE-MACHINE that combines DECODE,
FETCH, PRE_FETCH of the next three instructions.

4. Operation of Cycle Accurate Model

The operation of CBS for an example program CBS
that includes repeat mode is shown in Fig. 8. For
exceptional pipeline control, appropriate pipeline control
signals are generated in DECODE stage. The repeat
mode of “ADD *AR1+, A” instruction means that ADD
operation is executed repeatedly for the value of
RC(Repeat
PC(Program Counter). RC register is set to the value of
then decreases as ADD
operation has been finished. A control signal is

Counter) register without increasing

repeat times at the first,

generated to make PC stop increasing during the repeat
period. The state of pipeline returns to the normal mode
after the repeat operation has been done, then CBS
carries out the next “ADD A, 0, B” instruction.

ERLEEA]

B Co[E
ADD *AR14, A oot s S ADD CARYS, A
BIRE =

X Bﬂl
TmeRCYy mac-—a e L -

Fig. 8. Pipeline sequences of repeat mode.

IV. SET-UP CO-SIMULATION ENVIRONMENT

We had two simulation models, CBS and RTL, for the
same DSP, but they are different from each other in the
points of the language used and the abstraction level for

250 HYEONG BAE PARK et al : AN IMPLEMENTATION METHOD OF CYCLE ACCURATE SIMULATOR...

Control

signals Soruce

L

2 r AR Y
— .

TR

Lo

Crmearom e S Admes ALY

cammene |CBS model
output

N Mt W it st

= = = 1
mEm W A =
RTL model J owm ceem
output ¢

Co-Simulation mode | Memory Memory
controf and display

Fig. 9. Co-simulation of RTL model and CBS model.

logic operation, and the platform on which the program
is running. It is necessary to be seen the simulation
results from CBS and RTL level simulator on the same
screen for efficient RTL code debugging. We make the
CBS synchronized to RTL level simulator at the rate of
pipeline cycle because RTL level simulation is slower
than CBS. Two simulation is executed the same test
vector at the same time, then the results, which consist of
all data from storage elements and buses in DSP and
control signals, are compared at pipeline cycle level. If
there is a mismatch between two simulations, the
simulation is hold and error message is generated. In co-
simulation, socket protocol is used for communication
between two models. To get internal values of RTL
model and send the values through socket, PLI(Program
Language Interface) is used[10, 11]. The operation of

co-simulation is shown in Fig. 9.

V. DEBUGGING AND RESULTS

CBS was verified with the various test vectors that
consist of individual instruction set, combination of
instruction set, and application programs. We have
confirmed that results from CBS and HDL are exactly
the same through running the prepared test vectors. We
can save the debugging time at the RTL level coding of
target DSP by using the developed CBS as a reference.

The running times of CBS and HDL RTL simulation
for three applications are compared in Table 1. The

Table 1. Simulation speed.

RTL CBS RATIO
Application Program | SIMULATION | SIMULATION .
CBS/RTL
(cycle/seconds) | (cycle /seconds)
FFT 1,408 59,165 4)
ADPCM 1,664 41,601 25
AAC DECODER 664 23,934 36

ratios of two simulation running time are different from
application to application, but CBS is faster than HDL
RTL as much as 25 to 42 times. We could evaluate the
performance of target DSP in short time before RTL
level design get stated, because the CBS simulates the
DSP operation very fast compared to HDL RTL

simulation.

VI. CONCLUSIONS

In this paper, we introduce an implementation method
of CBS for a 24 bit DSP. The CBS gives us the
information at the pipeline cycle that consists of all data
of storage elements and buses, and control signals of
functional blocks in DSP. The developed CBS is faster
as 25 to 42 times than RTL simulation. We could
evaluate the performance of target DSP in short time by
using CBS before RTL level design get stated. An also,
we could save RTL level design and debugging time of
DSP that takes most time of design work by using CBS
as a reference model for RTL design. The concept and
technique we used in developing CBS for a 24 bit DSP
can be adapted and expanded to developing CBS of
other DSP’s and processors.

ACKNOWLEDGMENTS

This work was supported for two years by

Pusan National University Research Grant.

REFERENCES

[1] P. Bose, T. M. Conte, T. M. Austin, “Challenges in
processor modeling and validation,” Micro, IEEE,
Volume 19, Issue 3, pp. 9-14, May-June 1999.

[2] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H.
Meyr, A. Hoffmann, “A Universal Technique for
Fast and Flexible Instruction-Set Architecture

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 251

Simulation,” Design Automation Conference 39th,
pp. 22-27, June 2002.

[3] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O.
Schliebusch, O. Wahlen, A. Wieferink, H. Meyr,
“A Novel Methodology for the Design of
Application-Specific Instruction-Set Processors
(ASIPs) Using a Machine Description Language,”
Computer-Aided Design of Integrated Circuits
and Systems, pp. 1338-1354, Nov. 2001.

[4] Guillermo Maturana, James L. Ball, Jeffery Gee,
“Incas: A Cycle Model of
UltraSPARC™,” Computer IEEE,
pp. 130-135, Oct. 1995.

[5] Lisa Guerra, Joachim Fitzner, Dipankar Talukdar
“Cycle and Phase Accurate DSP Modeling and
Integration for HW/SW Co-Verification,” Design

Accurate
Design

Automation Conference IEEE, pp. 364-369, June 1999.

[6] R. Voith, “The PowerPC™ 603 C++ Verilog™

Model,” of papers-Spring
compCon 94, IEEE Computer Society Press, pp.
337-340, March 1994.

[7] Moon Gyung Kim, Byung In Moon, Sang Jun An,

Interface Digest

“Implementation of a Cycle-based Simulator for the
Design of a Processor Core”, AP-ASIC '99 IEEE,
pp. 108-111, Aug. 1999.

[8] Luc Séméria, Abhijit Ghosh, “Methodology for

Hardware/Software Co-vertfication i C/C+H-”
Design Automation Conference, pp. 405- 408, Jan.
2000.

[9] Mayan Moudgill, “Techniques for Implementing

Fast Processor Simulators,” Simulation
Symposium 31st Annual, pp. 83-90, April 1998.

[10] Stuart Sutherland, “The Verilog PLI handbook : a
user’s guide and comprehensive reference on the
Verilog programming language interface,” Kluwer
Academic Publishers, 1993.

[11] Mittra Swapnajit, “Principles of Verilog PLL”

Kluwer Academic Publishers, 1999.

Hyeong Bae Park received the B.S
degree in Telecommunication
Engineering from Dongseo University
and M.S.
engineering from Pusan National

University, Busan, Korea, in 2004,

degree in electrical

2006, respectively. His research interests include High
level modeling of processor, high-performance processor,
and on-chip debug architecture.

Ju Sung Park was born in Junju,
Korea, in 1953. He received the B.S
degree in electronics engineering
from Pusan National University,
Pusan, Korea, in 1976, the M.S.

: 1’ ‘ degree in electrical engineering from
KAIST, Seoul, Korea, in 1978, and the Ph.D. degree in
electrical engineering from University of Florida,
Gainsville, in 1989. From 1978 to 1991, he was with the

ETRI, Taejun, Korea, where he work as a Principal

Research Engineer and as the Manager and Director of
the IC Design Group. While at ETRI, he designed
several bipolar analog ICs and was in charge of
developing VCR ICs, CMOS 8-bit microprocessors, and
telecommunication chips. In 1991, he joined the
Electronics Department, Pusan National University
where he is now a Professor of Electrical Engineering.
His current research interests are microprocessor and
digital signal processing core design, digital audio
algorithm implementation by hardware, and software co-

design.

Tae Hoon Kim received the B.S,,
M.S., and PhD.
Electronic Engineering from Pusan
National Univ., Korea, in 1995,
1997, and 2002 respectively. He is
currently in the course of Post-Doc.
at the same University. From 2001 to 2006, he served as
a manager in VOISO semiconductor corp.

degrees in

His current research interests are DSP design, digital
audio signal processing and coding, audio algorithm
implementation by hardware and software.

Hua Jun Chi received the B.S

degree in Computer Science
Engineering from YUST(Yanbian
University of Science &
Technology), Yanji, China, in 2006.

His research interests include audio
algorithm (AAC, AC-3, MP3) coding and design of high

performance core.

